Return to search

An Inductive Method of Measuring Students’ Cognitive and Affective Processes via Self-Reports in Digital Learning Environments

Student affect can play a profoundly important role in students' post-school lives. Understanding students' affective states within online learning environments in particular has become an important matter of research, as digital tutoring systems have the potential to intervene at the moment that students are struggling and becoming frustrated, bored or disengaged. However, despite the importance of assessing students' affective states, there is no clear consensus about what emotions are most important to assess, nor how these emotions can be best measured.
This dissertation investigates students’ self-reports of their emotions and causal attributions of those emotions collected while they are solving math problems within a mathematics tutoring system. These self-reports are collected in two conditions: through limited choice Likert response and through open response text boxes. The conditions are combined with students’ cognitive attributions to describe epistemic (neither purely affective nor purely cognitive) emotions in order to explain the relationship between observable student behaviors in the MathSpring.org tutoring system and student affect. These factors include beliefs, expectations, motivations, and perceptions of ability and control. A special emphasis of this dissertation is on analyzing the role of causal attributions for the events and appraisals of the learning environment, as possible causes of student behaviors, performance, and affect.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-dissertations-1492
Date24 July 2018
CreatorsWixon, Naomi
ContributorsIvon Arroyo, Advisor, Ryan S. Baker, Committee Member, Joseph E. Beck, Committee Member, Kaska Porayska-Pomsta, Committee Member
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDoctoral Dissertations (All Dissertations, All Years)

Page generated in 0.0017 seconds