Neste trabalho estudamos as subvariedades lagrangeanas mínimas e autossimilares do espaço paracomplexo Dn. Começamos definindo o conceito de variedade para-Kähler e, como exemplo, descrevemos o espaço projetivo paracomplexo. Em seguida, estudamos as subvariedades paracomplexas e lagrangeanas. Após mostrarmos que toda subvariedade paracomplexa não-degenerada é mínima, dedicamos a atenção ao estudo das subvariedades lagrangeanas, restringindo-nos ao ambiente Dn. Em particular, estudamos as lagrangeanas que são invariantes sob a ação canônica do grupo SO(n), e as superfícies de Castro-Chen. Em ambos os casos, analisamos a minimalidade e a autossimilaridade das mesmas. / In this work, we study minimal and self-similar Lagrangian submanifolds in the para-complex space Dn. Firstly, we define the concept of para-Kähler manifold and, to exemplify, we describe the para-complex projective space.Then, we study para-complex submanifolds and Lagrangian submanifolds. After proving that every non-degenerate para-complex submanifold is minimal, we pay attention to Lagrangian submanifolds, restricting us to the case of Dn. In particular, we study Lagrangian submanifolds which are invariant by the canonical SO(n)-action of Dn, and Castro-Chen\'s surfaces. In both cases, we analyse the minimality and self-similarity.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05102015-104320 |
Date | 23 July 2015 |
Creators | Samuays, Maikel Antonio |
Contributors | Chaves, Rosa Maria dos Santos Barreiro |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds