Return to search

Um estudo sobre a Teoria da Predição aplicada à análise semântica de Linguagens Naturais. / A study on the Theory of Prediction applied to the semantical analysis of Natural Languages.

Neste trabalho, estuda-se o aprendizado computacional como um problema de indução. A partir de uma proposta de arquitetura de um sistema de análise semântica de Linguagens Naturais, foram desenvolvidos e testados individualmente os dois módulos necessários para a sua construção: um pré-processador capaz de mapear o conteúdo de textos para uma representação onde a semântica de cada símbolo fique explícita e um módulo indutor capaz de gerar teorias para explicar sequências de eventos. O componente responsável pela indução de teorias implementa uma versão restrita do Preditor de Solomonoff, capaz de tecer hipóteses pertencentes ao conjunto das Linguagens Regulares. O dispositivo apresenta complexidade computacional elevada e tempo de processamento, mesmo para entradas simples, bastante alto. Apesar disso, são apresentados resultados novos interessantes que mostram seu desempenho funcional. O módulo pré-processador do sistema proposto consiste em uma implementação da Análise da Semântica Latente, um método que utiliza correlações estatísticas para obter uma representação capaz de aproximar relações semânticas similares às feitas por seres humanos. Ele foi utilizado para indexar os mais de 470 mil textos contidos no primeiro disco do corpus RCV1 da Reuters, produzindo, a partir de dezenas de variações de parâmetros, 71;5GB de dados que foram utilizados para diversas análises estatísticas. Foi construído também um sistema de recuperação de informações para análises qualitativas do método. Os resultados dos testes levam a crer que o uso desse módulo de pré-processamento leva a ganhos consideráveis no sistema proposto. A integração dos dois componentes em um analisador semântico de Linguagens Naturais se mostra, neste momento, inviável devido ao tempo de processamento exigido pelo módulo indutor e permanece como uma tarefa para um trabalho futuro. No entanto, concluiu-se que a Teoria da Predição de Solomonoff é adequada para tratar o problema da análise semântica de Linguagens Naturais, contanto que sejam concebidas formas de mitigar o problema do seu tempo de computação. / In this work, computer learning is studied as a problem of induction. Starting with the proposal of an architecture for a system of semantic analisys of Natural Languages, the two modules necessary for its construction were built and tested independently: a pre-processor, capable of mapping the contents of texts to a representation in which the semantics of each symbol is explicit, and an inductor module, capable of formulating theories to explain chains of events. The component responsible for the induction of theories implements a restricted version of the Solomonoff Predictor, capable of producing hypotheses pertaining to the set of Regular Languages. Such device presents elevated computational complexity and very high processing time even for very simple inputs. Nonetheless, this work presents new and interesting results showing its functional performance. The pre-processing module of the proposed system consists of an implementation of Latent Semantic Analisys, a method which draws from statistical correlation to build a representation capable of approximating semantical relations made by human beings. It was used to index the more than 470 thousand texts contained in the first disk of the Reuters RCV1 corpus, resulting, through dozens of parameter variations, 71:5GB of data that were used for various statistical analises. The test results are convincing that the use of that pre-processing module leads to considerable gains in the system proposed. The integration of the two components built into a full-fledged semantical analyser of Natural Languages presents itself, at this moment, unachievable due to the processing time required by the inductor module, and remains as a task for future work. Still, Solomonoffs Theory of Prediction shows itself adequate for the treatment of semantical analysis of Natural Languages, provided new ways of palliating its processing time are devised.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-16112010-101029
Date18 February 2010
CreatorsIúri Chaer
ContributorsRicardo Luis de Azevedo da Rocha, Edson Satoshi Gomi, Flávio Soares Corrêa da Silva
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0058 seconds