Cette thèse porte sur les problèmes de segmentation d’objets et la segmentation sémantique qui visent soit à séparer des objets du fond, soit à l’attribution d’une étiquette sémantique spécifique à chaque pixel de l’image. Nous proposons deux approches pour la segmentation d’objets, et une approche pour la segmentation sémantique. La première approche est basée sur la détection de saillance. Motivés par notre but de segmentation d’objets, un nouveau modèle de détection de saillance est proposé. Cette approche se formule dans le modèle de récupération de la matrice de faible rang en exploitant les informations de structure de l’image provenant d’une segmentation ascendante comme contrainte importante. La segmentation construite à l’aide d’un schéma d’optimisation itératif et conjoint, effectue simultanément, d’une part, une segmentation d’objets basée sur la carte de saillance résultant de sa détection et, d’autre part, une amélioration de la qualité de la saillance à l’aide de la segmentation. Une carte de saillance optimale et la segmentation finale sont obtenues après plusieurs itérations. La deuxième approche proposée pour la segmentation d’objets se fonde sur des images exemples. L’idée sous-jacente est de transférer les étiquettes de segmentation d’exemples similaires, globalement et localement, à l’image requête. Pour l’obtention des exemples les mieux assortis, nous proposons une représentation nouvelle de haut niveau de l’image, à savoir le descripteur orienté objet, qui reflète à la fois l’information globale et locale de l’image. Ensuite, un prédicteur discriminant apprend en ligne à l’aide les exemples récupérés pour attribuer à chaque région de l’image requête un score d’appartenance au premier plan. Ensuite, ces scores sont intégrés dans un schéma de segmentation du champ de Markov (MRF) itératif qui minimise l’énergie. La segmentation sémantique se fonde sur une banque de régions et la représentation parcimonieuse. La banque des régions est un ensemble de régions générées par segmentations multi-niveaux. Ceci est motivé par l’observation que certains objets peuvent être capturés à certains niveaux dans une segmentation hiérarchique. Pour la description de la région, nous proposons la méthode de codage parcimonieux qui représente chaque caractéristique locale avec plusieurs vecteurs de base du dictionnaire visuel appris, et décrit toutes les caractéristiques locales d’une région par un seul histogramme parcimonieux. Une machine à support de vecteurs (SVM) avec apprentissage de noyaux multiple est utilisée pour l’inférence sémantique. Les approches proposées sont largement évaluées sur plusieurs ensembles de données. Des expériences montrent que les approches proposées surpassent les méthodes de l’état de l’art. Ainsi, par rapport au meilleur résultat de la littérature, l’approche proposée de segmentation d’objets améliore la mesure d F-score de 63% à 68,7% sur l’ensemble de données Pascal VOC 2011. / This thesis focuses on the problems of object segmentation and semantic segmentation which aim at separating objects from background or assigning a specific semantic label to each pixel in an image. We propose two approaches for the object segmentation and one approach for semantic segmentation. The first proposed approach for object segmentation is based on saliency detection. Motivated by our ultimate goal for object segmentation, a novel saliency detection model is proposed. This model is formulated in the low-rank matrix recovery model by taking the information of image structure derived from bottom-up segmentation as an important constraint. The object segmentation is built in an iterative and mutual optimization framework, which simultaneously performs object segmentation based on the saliency map resulting from saliency detection, and saliency quality boosting based on the segmentation. The optimal saliency map and the final segmentation are achieved after several iterations. The second proposed approach for object segmentation is based on exemplar images. The underlying idea is to transfer segmentation labels of globally and locally similar exemplar images to the query image. For the purpose of finding the most matching exemplars, we propose a novel high-level image representation method called object-oriented descriptor, which captures both global and local information of image. Then, a discriminative predictor is learned online by using the retrieved exemplars. This predictor assigns a probabilistic score of foreground to each region of the query image. After that, the predicted scores are integrated into the segmentation scheme of Markov random field (MRF) energy optimization. Iteratively finding minimum energy of MRF leads the final segmentation. For semantic segmentation, we propose an approach based on region bank and sparse coding. Region bank is a set of regions generated by multi-level segmentations. This is motivated by the observation that some objects might be captured at certain levels in a hierarchical segmentation. For region description, we propose sparse coding method which represents each local feature descriptor with several basic vectors in the learned visual dictionary, and describes all local feature descriptors within a region by a single sparse histogram. With the sparse representation, support vector machine with multiple kernel learning is employed for semantic inference. The proposed approaches have been extensively evaluated on several challenging and widely used datasets. Experiments demonstrated the proposed approaches outperform the stateofthe- art methods. Such as, compared to the best result in the literature, the proposed object segmentation approach based on exemplar images improves the F-score from 63% to 68.7% on Pascal VOC 2011 dataset.
Identifer | oai:union.ndltd.org:theses.fr/2014ISAR0007 |
Date | 13 March 2014 |
Creators | Zou, Wenbin |
Contributors | Rennes, INSA, Senhadji, Lotfi |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds