Cette thèse porte sur inférence statistique, les méthodes bootstrap et l’analyse multivariée dans le cadre des processus semi-markoviens. Les applications principales concernent un problème de la mécanique de la rupture. Ce travail a une contribution double. La première partie concerne la modélisation stochastique du phénomène de la propagation de fissure de fatigue. Une équation différentielle stochastique décrit le mécanisme de la dégradation et le caractère aléatoire inné du phénomène est traité par un processus de perturbation. Sous l'hypothèse que ce processus soit un processus markovien (ou semi-markovien) de saut, la fiabilité du modèle est étudiée en faisant usage de la théorie du renouvellement markovien et une nouvelle méthode, plus rapide, de calcul de fiabilité est proposée avec l'algorithme correspondant. La méthode et le modèle pour le processus markovien de perturbation sont validés sur des données expérimentales. Ensuite, la consistance forte des estimateurs des moindres carrés des paramètres du modèle est obtenue en supposant que les résidus du modèle stochastique de régression, dans lequel le modèle initial est transformé, soient des différences de martingales. Dans la deuxième partie de la thèse, nous avons abordé le problème difficile de l'approximation de la distribution limite de certains estimateurs non paramétriques des noyaux semi-markoviens ou certaines fonctionnelles via la méthode bootstrap pondérée dans un cadre général. Des applications de ces résultats sur des problèmes statistiques sont données pour la construction de bandes de confiance, les tests statistiques, le calcul de la valeur p du test et pour l’estimation des inverses généralisés. / The present dissertation is devoted to the statistical inference, bootstrap methods and multivariate analysis in the framework of semi-Markov processes. The main applications concern a mechanical problem from fracture mechanics. This work has a two-fold contribution. The first part concerns in general the stochastic modeling of the fatigue crack propagation phenomenon. A stochastic differential equation describes the degradation mechanism and the innate randomness of the phenomenon is handled by a perturbation process. Under the assumption that this process is a jump Markov (or semi-Markov) process, the reliability of the model is studied by means of Markov renewal theory and a new, faster, reliability calculus method is proposed with the respective algorithm. The method and the model for the Markov perturbation process are validated on experimental fatigue data. Next, the strong consistency of the least squares estimates of the model parameters is obtained by assuming that the residuals of the stochastic regression model are martingale differences into which the initial model function is transformed. In the second part of the manuscript, we have tackled the difficult problem of approximating the limiting distribution of certain non-parametric estimators of semi-Markov kernels or some functionals of them via the weighted bootstrap methodology in a general framework. Applications of these results on statistical problems such as the construction of confidence bands, the statistical tests, the computation of the p-value of the test are provided and the estimation of the generalized inverses.
Identifer | oai:union.ndltd.org:theses.fr/2016COMP2284 |
Date | 28 June 2016 |
Creators | Papamichail, Chrysanthi |
Contributors | Compiègne, Bouzebda, Salim, Limnios, Nikolaos |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds