Le présent travail porte sur l’estimation d’un système en temps discret dont l’évolution est décrite par une chaîne semi-markovienne (CSM) d’espace d’état fini. Nous présentons le principe d’invariance sous forme multidimensionnelle pour le noyau semi-markovien (NSM), ainsi que diverses mesures du processus. Ensuite, nous étudions l’estimation non-paramétrique de la loi stationnaire de la CSM, en considérant deux estimateurs différents, et nous montrons qu’ils ont le même comportement asymptotique. La probabilité de la première entrée est également introduite. Nous proposons un estimateur et nous étudions ses propriétés asymptotiques : la convergence forte et la normalité asymptotique.D’autre part, nous nous concentrons sur l’étude de la fiabilité des systèmes semi-markoviens. Nous définissons la fiabilité sur intervalle d’un système dont la fiabilité et la disponibilité sont des cas particuliers et nous étudions les propriétés asymptotiques d’un estimateur proposé. De plus, nous présentons une comparaison de l’estimation des différentes mesures de fiabilité fondées sur deux estimateurs du NSM, en réalisant une trajectoire unique et des observations multiples indépendantes. Ce travail fournit aussi des résultats dans le cas semi-markovien à temps discret avec espace d’état général. Nous évaluons l’approximation de moyenne et de diffusion des chaînes de renouvellement markovien. Enfin, nous nous sommes aussi intéressés à une autre classe des processus pour laquelle nous obtenons des résultats dans le cadre des files d’attente. Nous étudions l’approximation de moyenne pour le modèle d’Engset en temps continu et nous appliquons ce résultat aux files d’attente avec ré-essais. / The present work concerns the estimation of a discrete-time system whose evolution is governed by a semi-Markov chain (SMC) with finitely many states. We present the invariance principle in a multidimensional form for the semi-Markov kernel (SMK) and some associated measures of the process. Afterwards, we study the nonparametric estimation of the stationary distribution of the SMC, considering two different estimators, and we prove that they hold the same asymptotic behavior. We introduce also the first hitting probability. We propose an estimator and study its asymptotic properties : the strong consistency and the asymptotic normality. On the other hand, we focus on the study of the dependability of semi-Markovsystems. We introduce the interval reliability whose special cases are the reliability and the availability measures and we study the asymptotic properties of a proposed estimator. Moreover, we present a comparison of nonparametric estimation for various reliability measures based on two estimators of the SMK, realizing a unique trajectory and multiple independent observations.Furthermore, this work provides results on the discrete-time semi-Markov case with general state space. We evaluate the average and diffusion approximation of Markov renewal chains. Finally, we are also interested in another class of processes for which we obtain results in the framework of queueing systems. We establish the average approximationfor the Engset model in continuous time and we apply this result to retrial queues.
Identifer | oai:union.ndltd.org:theses.fr/2013COMP2112 |
Date | 03 December 2013 |
Creators | Georgiadis, Stylianos |
Contributors | Compiègne, Limnios, Nikolaos |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds