Les processus physico-chimiques se produisant au sein des nanoparticules que sont les boîtes quantiques semiconductrices (QDs) sont à l'origine d'une nouvelle classe de sondes fluorescentes trouvant des applications en catalyse, en reconnaissance moléculaire et en imagerie. Le confinement quantique des électrons aux sein de ces objets luminescents, qui donne lieu à leur structure excitonique si particulière, permet de tirer simultanément profit de leurs propriétés optiques d'absorption et d'émission dans la gamme spectrale visible, et ce, dans le but de faciliter la détection et l’identification des espèces chimiques situées dans leur environnement proche. Dans ce contexte, nous nous sommes intéressés à des QDs de 3 à 4 nm de diamètre, composées d’un alliage ternaire de cadmium, de tellure et de soufre, et fonctionnalisées par des ligands mercaptocarboxyliques. De manière à déterminer l’ensemble de leurs propriétés structurales, chimiques et optoélectroniques, nous les avons tout d’abord caractérisées à l’état de solutions colloïdales par diverses techniques expérimentales : microscopie électronique, zêta-métrie, analyse par diffusion dynamique de la lumière, spectroscopies de rayons X, d’absorption UV-visible et d’émission de fluorescence. Ceci nous a permis de déduire la composition chimique des nanocristaux, leur structure cristalline, leur taille, leur dispersion en taille, la composition chimique de leurs ligands, les énergies propres de leurs états électroniques, leur moments dipolaires de transition et leur section efficace d’absorption. Fort de ces connaissances, nous avons pu développer un modèle analytique pour calculer la susceptibilité diélectrique des QDs et extraire de cette manière leur fonction de réponse linéaire, véritable carte d’identité optoélectronique. Nous avons ensuite optimisé la conception par voie chimique d’interfaces composées de QDs et de différentes espèces moléculaires organiques, dépôts réalisés sous forme de monocouches ou de films épais sur des substrats solides plans de silicium, de verre et de fluorure de calcium fonctionnalisés par des organosilanes. Ces interfaces substrat/QDs/molécules ont alors été étudiées par spectroscopie linéaire d’absorption UV-visible et par spectroscopie optique non-linéaire de génération de fréquence-somme (SFG). La première nous a permis de déterminer la densité superficielle des QDs déposés et d’en caractériser la stabilité temporelle, et la seconde, qui combine deux lasers visible et infrarouge, d’identifier la signature vibrationnelle des ligands recouvrant les QDs. Grâce à ces échantillons, nous avons alors montré par spectroscopie SFG deux couleurs l’existence d’un couplage vibroélectronique entre les QDs et leur environnement moléculaire. En particulier, nous avons démontré que l’amplitude de vibration des modes moléculaires associés aux ligands des QDs et aux organosilanes greffés sur les substrats est maximale lorsque les QDs sont eux-mêmes stimulés par la lumière visible dans leur premier état excitonique. Cette démonstration expérimentale s’accompagne par ailleurs d’une démonstration théorique : en utilisant les diagrammes de Feynman dans l’espace des fréquences imaginaires de Matsubara, nous avons déterminé l’expression analytique de la susceptibilité non-linéaire d’ordre 2 du complexe QD/molécule. Nous avons alors vérifié que l’hypothèse d’un couplage dipolaire entre QDs et molécules menait à une modélisation de la réponse vibrationnelle SFG compatible avec les mesures expérimentales. De cette manière, l’existence d’un couplage vibroélectronique de nature dipolaire entre boîtes quantiques et molécules est attesté. / The different physico-chemical processes occurring within semiconductor quantum dots (QDs) give rise to a new class of fluorescent probes and a wide range of applications in catalysis, molecular recognition and imaging. Within these luminescent nanoparticles, the quantum confinement of electrons, which leads to their very special excitonic structure, allows us to benefit from both their absorption and emission optical properties, with the specific aim of fostering the detection and the identification of the chemical species located in their direct environment. Within this framework, we were interested in 3 to 4-nm-sized QDs composed of ternary alloys of cadmium, telluride and sulfur, and functionalized by mercaptocarboxylic ligands. In order to determine their structural, chemical and optoelectronic properties, we first characterized them thanks to several experimental techniques: electron microscopy, zeta potentiel measurements, dynamic light scattering analysis, X-ray, UV-visible and fluorescence spectroscopies. This enabled us to deduce the chemical composition of the nanocrystals, their crystal structure, size, size-dispersion, the chemical composition of their ligands, the eigenenergies of their electronic states, their transition dipole moments and absorption cross-sections. Given all those results, we succeeded in deriving an analytical model of the QD dielectric susceptibility and extracting in this way their linear response function. Then, we optimized the chemical synthesis of nanostructured interfaces made of QDs and various molecular species through the use of flat solid substrates of silicon, glass and calcium fluoride functionalized with organosilanes. These substrate/QDs/molecules interfaces were studied by linear UV-visible absorption spectroscopy and by sum-frequency generation non-linear optical spectroscopy (SFG). The former allowed us to determine the surface density of the deposited QDs and to characterize their stability over time, while the later, which combines two visible and infrared lasers, enabled us to identify the vibrational signature of the QD ligands. Thanks to those samples probed by two-colour SFG spectroscopy, we therefore shew the existence of a vibroelectronic coupling between QDs and their molecular surroundings. Especially, we demonstrated that the vibration amplitudes associated to the molecular modes of the QD ligands and the organosilanes grafted on the substrates are maximum when the QDs are excited by visible light into their first excitonic state. This experimental demonstration is further supported by theoretical considerations: Feynman diagrams in Matsubara imaginary-time representation were used to determine the analytical expression of the second-order nonlinear susceptibility of the QD/molecule bipartite system. We thus verified that the hypothesis of a dipolar coupling between QDs and molecules resulted in a modeling of the vibrational SFG response which proved to be in complete agreement with the experimental measurements. Thus, we evidenced the existence of a dipolar vibroelectronic coupling between quantum dots and molecules.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLS272 |
Date | 18 September 2019 |
Creators | Noblet, Thomas |
Contributors | Paris Saclay, Humbert, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds