Applications of zinc oxide (ZnO) for optoelectronic devices, including light emitting diodes, semiconductor lasers, and solar cells have not yet been realized due to the lack of high-quality p-type ZnO. In the research presented herein, pulsed laser deposition is employed to grow Ag-doped ZnO thin films, which are characterized in an attempt to understand the ability of Ag to act as a p-type dopant. By correlating the effects of the substrate temperature, oxygen pressure, and laser energy on the electrical and microstructural properties of Ag-doped ZnO films grown on c-cut sapphire substrates, p-type conductivity is achieved under elevated substrate temperatures. Characteristic stacking fault features have been continuously observed by transmission electron microscopy in all of the p-type films. Photoluminescence studies on n-type and p-type Ag-doped ZnO thin films demonstrate the role of stacking faults in determining the conductivity of the films. Exciton emission attributed to basal plane stacking faults suggests that the acceptor impurities are localized nearby the stacking faults in the n-type films. The photoluminescence investigation provides a correlation between microstructural characteristics and electrical properties of Ag- doped ZnO thin films; a link that enables further understanding of the doping nature of Ag impurities in ZnO. Under optimized deposition conditions, various substrates are investigated as potential candidates for ZnO thin film growth, including r -cut sapphire, quartz, and amorphous glass. Electrical results indicated that despite narrow conditions for obtaining p-type conductivity at a given substrate temperature, flexibility in substrate choice enables improved electrical properties.
In parallel, N+-ion implantation at elevated temperatures is explored as an alternative approach to achieve p-type ZnO. The ion implantation fluence and temperature have been optimized to achieve p-type conductivity. Transmission electron microscopy reveals that characteristic stacking fault features are present throughout the p-type films, however in n-type N-doped films high-density defect clusters are observed. These results suggest that the temperature under which ion implantation is performed plays a critical role in determining the amount of dynamic defect re- combination that can take place, as well as defect cluster formation processes. Ion implantation at elevated temperatures is shown to be an effective method to introduce increased concentrations of p-type N dopants while reducing the amount of stable post-implantation disorder.
Finally, the fabrication and properties of p-type Ag-doped ZnO/n-type ZnO and p-type N-doped ZnO/n-type ZnO thin film junctions were reported. For the N-doped sample, a rectifying behavior was observed in the I-V curve, consistent with N-doped ZnO being p-type and forming a p-n junction. The turn-on voltage of the device was ∼2.3 V under forward bias. The Ag-doped samples did not result in rectifying behavior as a result of conversion of the p-type layer to n-type behavior under the n- type layer deposition conditions. The systematic studies in this dissertation provide possible routes to grow p-type Ag-doped ZnO films and in-situ thermal activation of N-implanted dopant ions, to overcome the growth temperature limits, and to push one step closer to the future integration of ZnO-based devices.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/149354 |
Date | 03 October 2013 |
Creators | Myers, Michelle Anne |
Contributors | Wang, Haiyan, Cheng, Xing, Ji, Jim, Shao, Lin |
Source Sets | Texas A and M University |
Language | English |
Detected Language | English |
Type | Thesis, text |
Format | application/pdf |
Page generated in 0.0057 seconds