Ce travail apporte une contribution à la modélisation des piles à combustible de type PEM. La modélisation fait ici appel aux réseaux artificiels de neurones et est appliquée à deux piles à combustible de puissances différentes. La première partie de ce mémoire rappelle les verrous technologiques liés à l'intégration des piles à combustibles dans un véhicule. Puis l'auteur s'interroge sur la nécessité de modéliser une pile à combustible avant de se pencher sur les différentes méthodes de modélisation existante. La réalisation d'un modèle neuronal décrivant le comportement statique d'une pile à combustible de type PEM est la première étape de cette étude. La deuxième partie décrit la démarche qui a permis de réaliser ce modèle. Elle se décompose en trois points essentiels : 1) choix d'une topologie adaptée, 2) choix d'essais expérimentaux pour établir une séquence d'apprentissage représentative du système et choix des entrées/sorties du modèle, 3) étude de différentes techniques d'apprentissage menant à une modélisation satisfaisante. Afin d'obtenir un modèle complet, le comportement dynamique de la pile doit être décrit. L'élaboration du modèle dynamique à l'aide de réseaux de neurones bouclés est exposée dans la troisième partie. Pour conclure ce mémoire, une méthode originale basée sur l'analyse de Fourier permet d'obtenir une boîte noire multi-modèle permettant de coupler les modèles dynamiques et statiques pour prédire l'évolution temporelle de la tension de la pile à combustible selon des sollicitations de courant à fréquence variable. Enfin, une étude de sensibilité paramétrique est réalisée.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00777611 |
Date | 14 October 2004 |
Creators | Jemeï, Samir |
Publisher | Université de Franche-Comté, Université de Technologie de Belfort-Montbeliard |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0032 seconds