Scaled test-beds (STBs) are popular tools to develop and physically test algorithms for advanced driving systems, but often lack automotive-grade radars in their sensor suites. To overcome resolution issues when using a radar at small scale, a high-level sensor fusion approach between the radar and automotive-grade LiDAR was proposed. The sensor fusion approach was expected to leverage the higher spatial resolution of the LiDAR effectively. First, multi object radar tracking software (RTS) was developed to track a maneuvering full-scale vehicle using an extended Kalman filter (EKF) and the joint probabilistic data association (JPDA). Second, a 1/5th scaled vehicle performed the same vehicle maneuvers but scaled to approximately 1/5th the distance and speed. When taking the scaling factor into consideration, the RTS' positional error at small scale was, on average, over 5 times higher than in the full-scale trials. Third, LiDAR object sensor tracks were generated for the small-scale trials using a Velodyne PUCK LiDAR, a simplified point cloud clustering algorithm, and a second EKF implementation. Lastly, the radar sensor tracks and LiDAR sensor tracks served as inputs to a high-level track-to-track fuser for the small-scale trials. The fusion software used a third EKF implementation to track fused objects between both sensors and demonstrated a 30% increase in positional accuracy for a majority of the small-scale trials when compared to using just the radar or just the LiDAR to track the vehicle. The proposed track fuser could be used to increase the accuracy of RTS algorithms when operating in small scale and allow STBs to better incorporate automotive radars into their sensor suites. / Master of Science / Research and development platforms, often supported by robust prototypes, are essential for the development, testing, and validation of automated driving functions. Thousands of hours of safety and performance benchmarks must be met before any advanced driver assistance system (ADAS) is considered production-ready. However, full-scale testbeds are expensive to build, labor-intensive to design, and present inherent safety risks while testing. Scaled prototypes, developed to model system design and vehicle behavior in targeted driving scenarios, can minimize these risks and expenses. Scaled testbeds, more specifically, can improve the ease of safety testing future ADAS systems and help visualize test results and system limitations, better than software simulations, to audiences with varying technical backgrounds. However, these testbeds are not without limitation. Although small-scale vehicles may accommodate similar on-board systems to its full-scale counterparts, as the vehicle scales down the resolution from perception sensors decreases, especially from on board radars. With many automated driving functions relying on radar object detection, the scaled vehicle must host radar sensors that function appropriately at scale to support accurate vehicle and system behavior. However, traditional radar technology is known to have limitations when operating in small-scale environments. Sensor fusion, which is the process of merging data from multiple sensors, may offer a potential solution to this issue. Consequently, a sensor fusion approach is presented that augments the angular resolution of radar data in a scaled environment with a commercially available Light Detection and Ranging (LiDAR) system. With this approach, object tracking software designed to operate in full-scaled vehicles with radars can operate more accurately when used in a scaled environment. Using this improvement, small-scale system tests could confidently and quickly be used to identify safety concerns in ADAS functions, leading to a faster and safer product development cycle.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/102932 |
Date | 02 April 2021 |
Creators | Beale, Gregory Thomas |
Contributors | Engineering Science and Mechanics, Perez, Miguel A., Doerzaph, Zachary R., Berkmeier, Matthew D. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds