This thesis presents methods for robust precision landing of unmanned air vehicles (UAVs) on platforms at sea. Localization methods are proposed for UAV-to-boat state estimation for systems that employ real- time kinematic (RTK) global navigation satellite system (GNSS) and vision sensors. Solutions for GNSS-only are first presented, followed by the fusion of GNSS and vision. The important problem of sensor intrinsic calibration is solved with a novel offline batch estimation approach. Hardware results are presented for all methods. Our calibration of GNSS-to-camera is shown to estimate sensor offsets with millimeter level accuracy. Localization systems are combined with custom state machines that manage the landing attempt via a novel descent cone. This conical threshold enforces a safe and accurate landing. Our landing methods are demonstrated in real-world experiments and achieve consistent accurate landings with error below 10 cm. The fusion of camera and RTK is shown to produce a robust landing system with redundant localization sources.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-11072 |
Date | 16 August 2023 |
Creators | Jordan, Alexander D. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0018 seconds