Return to search

Investigação sobre métodos para redução de dimensionalidade dos dados em imagens hiperespectrais

Os recentes avanços na tecnologia de sensores tem disponibilizado imagens em alta dimensionalidade para fins de sensoriamento Remoto. Análise e interpretação dos dados provenientes desta nova geração de sensores apresenta novas possibilidades e também novos desafios. Neste contexto,um dos maiores desafios consiste na estimação dos parâmetros em um classificador estatístico utilizando-se um número limitado de amostras de treinamento.Neste estudo,propõe-se uma nova metodologia de extração de feições para a redução da dimensionalidadedos dados em imagens hiperespectrais. Essa metodologia proposta é de fácil implementação e também eficiente do ponto de vista computacional.A hipótese básica consiste em assumir que a curva de resposta espectral do pixel, definida no espaço espectral, pelos contadores digitais (CD's) das bandas espectrais disponíveis, pode ser substituída por um número menor de estatísticas, descrevendo as principais característicasda resposta espectral dos pixels. Espera-se que este procedimento possa ser realizado sem uma perda significativa de informação. Os CD's em cada banda espectral são utilizados para o cálculo de um número reduzido de estatísticas que os substituirão no classificador. Propõe-se que toda a curva seja particionada em segmentos, cada segmento sendo então representado pela respectiva média e variância dos CD's. Propõem-se três algoritmos para segmentação da curva de resposta espectral dos pixels. O primeiro utiliza um procedimento muito simples. Utilizam-se segmentos de comprimento constante, isto é, não se faz nenhuma tentativa para ajustar o comprimento de cada segmento às características da curva espectral considerada. Os outros dois implementam um método que permite comprimentos variáveis para cada segmento,onde o comprimentodos segmentos ao longo da curva de resposta espectral é ajustado seqüencialmente.Um inconveniente neste procedimento está ligado ao fato de que uma vez selecionadauma partição, esta não pode ser alterada, tornando os algoritmos sub-ótimos. Realizam-se experimentos com um classificador paramétrico utilizando-se uma imagem do sensor AVIRIS. Obtiveram-se resultados animadores em termos de acurácia da classificação,sugerindo a eficácia dos algoritmos propostos.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/6335
Date January 2004
CreatorsZortea, Maciel
ContributorsHaertel, Vitor Francisco de Araújo
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds