Return to search

Exploring pain & movement relationships: is greater physical activity associated with reduced pain sensitivity & does endogenous muscle pain alter protective reflexes in the upper extremity?

Pain and movement are intimately connected and nearly universal human experiences. However, our understanding of the extent, significance, and mechanisms of pain-movement relationships is limited. While pain is a normal, protective response to injury and potentially harmful stimuli, prolonged or dysfunctional neuromuscular adaptions in response to pain can contribute to a variety of pain conditions. Alternatively, movement (in the form of global physical activity, individual exercise programs, and/or specific motor learning/functional tasks) is often prescribed to help decrease pain and improve function. While attempts have been made to show an effect of movement on pain or to better understand altered movement strategies in response to pain, much of the research has been limited to animal models or to those with specific persistent or chronic pain conditions limiting generalizability and interpretability. Therefore, this research sought to advance current understanding of the relationships between physical activity and normal variability in centrally- and peripherally-mediated pain in healthy adults. Additionally, we sought to characterize changes in reflexive motor responses in the upper extremity to an endogenous, naturally-occurring, long-lasting acute muscle pain.
The results of these investigations indicate that greater, self-reported intense (i.e. vigorous) and leisure activity are more strongly associated with decreased pain sensitivity than is pain modulation or measured activity (via accelerometry). Future research is needed to determine directionality of these relationships. Further, reflexive motor responses to endogenous, acute muscle pain in the upper extremity were not significantly altered indicating that changes in pain-related, movement strategies may be more strongly influenced by supraspinal adaptations. These results may have value in improving understanding of pain-related, movement sequelae and directing future research in this area.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6806
Date01 December 2016
CreatorsMerkle, Shannon L. M.
ContributorsFrey Law, Laura A.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2016 Shannon L.M. Merkle

Page generated in 0.0021 seconds