Return to search

Reification of network resource control in multi-agent systems

In multi-agent systems [1], coordinated resource sharing is indispensable for a set of autonomous agents, which are running in the same execution space, to accomplish their computational objectives. This research presents a new approach to network resource control in multi-agent systems, based on the CyberOrgs [2] model. This approach aims to offer a mechanism to reify network resource control in multi-agent systems and to realize this mechanism in a prototype system. <p>In order to achieve these objectives, a uniform abstraction vLink (Virtual Link) is introduced to represent network resource, and based on this abstraction, a coherent mechanism of vLink creation, allocation and consumption is developed. This mechanism is enforced in the network by applying a fine-grained flow-based scheduling scheme. In addition, concerns of computations are separated from those of resources required to complete them, which simplifies engineering of network resource control. Thus, application programmers are enabled to focus on their application development and separately declaring resource request and defining resource control policies for their applications in a simplified way. Furthermore, network resource is bounded to computations and controlled in a hierarchy to coordinate network resource usage. A computation and its sub-computations are not allowed to consume resources beyond their resource boundary. However, resources can be traded between different boundaries. <p> In this thesis, the design and implementation of a prototype system is described as well. The prototype system is a middleware system architecture, which can be used to build systems supporting network resource control. This architecture has a layered structure and aims to achieve three goals: (1) providing an interface for programmers to express resource requests for applications and define their resource control policies; (2) specializing the CyberOrgs model to control network resource; and (3) providing carefully designed mechanisms for routing, link sharing and packet scheduling to enforce required resource allocation in the network.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-08312006-122406
Date31 August 2006
CreatorsLiu, Chen
ContributorsSaadat Mehr, Aryan, Jamali, Nadeem, Horsch, Michael C., Eager, Derek L.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-08312006-122406/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds