Master of Engineering / This thesis presents an innovative human promoter recognition model HPR-PCA. Principal component analysis (PCA) is applied on context feature selection DNA sequences and the prediction network is built with the artificial neural network (ANN). A thorough literature review of all the relevant topics in the promoter prediction field is also provided. As the main technique of HPR-PCA, the application of PCA on feature selection is firstly developed. In order to find informative and discriminative features for effective classification, PCA is applied on the different n-mer promoter and exon combined frequency matrices, and principal components (PCs) of each matrix are generated to construct the new feature space. ANN built classifiers are used to test the discriminability of each feature space. Finally, the 3 and 5-mer feature matrix is selected as the context feature in this model. Two proposed schemes of HPR-PCA model are discussed and the implementations of sub-modules in each scheme are introduced. The context features selected by PCA are III used to build three promoter and non-promoter classifiers. CpG-island modules are embedded into models in different ways. In the comparison, Scheme I obtains better prediction results on two test sets so it is adopted as the model for HPR-PCA for further evaluation. Three existing promoter prediction systems are used to compare to HPR-PCA on three test sets including the chromosome 22 sequence. The performance of HPR-PCA is outstanding compared to the other four systems.
Identifer | oai:union.ndltd.org:ADTP/201515 |
Date | January 2008 |
Creators | Li, Xiaomeng |
Publisher | University of Sydney., School of Electrical and Information Engineering |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | The author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html |
Page generated in 0.0019 seconds