Return to search

Modelos logisticos quadraticos com maxima verossimilhança penalizada para previsão de estrutura secundaria de proteinas

Orientador: Renato M. E. Sabbatini / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica / Made available in DSpace on 2018-07-21T01:42:31Z (GMT). No. of bitstreams: 1
Porrelli_RaulNeder_M.pdf: 10278987 bytes, checksum: 09e9a4c65fd6c396aa90700be5fdf713 (MD5)
Previous issue date: 1995 / Resumo: Apesar do grande número de algoritmos existentes para a previsão de estrutura secundária de proteínas, determinadas técnicas estatísticas ainda não haviam sido exploradas. Utilizamos a metodologia de funções discriminantes logísticas na tentativa de ultrapassar a acurácia obtida por métodos que usaram redes neurais e teoria da informação. O número de parâmetros foi limitado explorando-se a natureza periódica das alfa-hélices e placas pregueadas beta. Uma grande variedade de modelos foi pesquisada, usando abordagem semi-paramétrica (máxima verossimilhança com penalização) combinada com seleção gradual de parâmetros. Mostramos que os modelos mais bem sucedidos tem ao redor de 800 parâmetros "efetivos" para o conjunto de dados utilizado. Os 340 parâmetros lineares e parte dos 800 parâmetros quadráticos puderam ser interpretados do ponto de vista físico-químico, contrastando com outros métodos da literatura. Após otimização e validação _cruzada, a acurácia foi de 65.9% para três estados estruturais, o que representa um resultado ligeiramente superior aos dos algoritmos já publicados. A maior acurácia de previsão está concentrada numa porção dos resíduos e a confiança da previsão pode ser facilmente calculada. Exploramos a possibilidade de usar estes resíduos, previstos com alta confiabilidade, para prever a estrutura completa da proteína, assim como muitos outros artifícios para aumentar a eficiência do método, com resultados limitados. Embora tenhamos obtido apenas uma modesta melhora da acurácia, a maneira como implementamos o modelo sugere que utilizamos toda a informação estrutural contida em segmentos de até 17 aminoácidos, no nível de complexidade que a quantidade de dados permite / Mestrado / Mestre em Engenharia Elétrica

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/259808
Date20 November 1995
CreatorsPorrelli, Raul Neder
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Sabbatini, Renato Marcos Endrizzi, 1947-, Sabbatini, Renato M. E.
Publisher[s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format154 f., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds