The properties of a broad range of materials are due to processes which occur at the nanoscale. Recently, an increasing interest has been devoted to nanostructured materials, in which the basic components are nanoscopic, and low-dimensional nanomaterials such as nanoparticles, nanowires and layered materials, in which one or more dimensions are confined. This thesis deals with nanostructured materials, in particular based on graphene, such as Graphene Nanofoams and Pillared Graphene Frameworks, and low dimensional nanomaterials such as SiC/SiO2 core/shell nanowires and graphene layers. The work is divided in four parts treating four different topics with the underlying theme of material modeling, the first two parts deal with mechanical properties and gas treatment applications, for which a description at the atomistic level is adequate, while the third and the forth focus on X-ray spectra and electron holography simulations for which electronic structure calculations are needed. The present thesis gives a general overview on various computational approaches that are useful in modeling novel low dimensional and nanostructured materials, using these approaches in dealing with specific systems.
Identifer | oai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/369047 |
Date | January 2018 |
Creators | Pedrielli, Andrea |
Contributors | Pedrielli, Andrea, Pugno, Nicola, Garberoglio, Giovanni |
Publisher | Università degli studi di Trento, place:TRENTO |
Source Sets | Università di Trento |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/openAccess |
Relation | firstpage:1, lastpage:135, numberofpages:135 |
Page generated in 0.0038 seconds