Thesis (DTech (Chemistry))--Cape Peninsula University of Technology, 2016. / The use of ozone as an advanced oxidation process is gathering wide spread attention with the major limitation to its application being its cost of operation and design considerations. While the general approach of most researches is to buttress the already known fact of the efficacy of the process, little attention is given to studying the by-products of ozone reactions with organics. The aims of this study were to investigate the efficacy of the ozonation process for removing recalcitrant phenolics: phenol, 2-chlorophenol (2CP), 4-chlorophenol (4CP) and 2,4-dichloropheno (2,4DCP) from aqueous medium with a view of understanding various reaction pathways of the process and identifying possible intermediates and residual compounds using liquid chromatography-mass spectrometry (LC-MS). The choice of the selected chlorophenols would also elucidate the role of the positioning of the chlorine atoms in determining reaction rates, pathways and subsequent mechanisms and by-products. Sequel to this, oxy-hydroxy iron in β-phase (β-FeOOH, akaganite) and various β-FeOOH bonded composites on support metal oxides (Al2O3, NiO and TiO2) were prepared via hetero-junction joining, and explored as a possible promoter to improve the efficiency of the ozonation process. Apparent first order reaction rates constants of tested phenolics was in the order 2,4-DCP > 2-CP > Phenol > 4-CP, irrespective of the tested pH. The individual rates however increased with increasing pH. The position 4 chlorine atom was found to be least susceptible to hydroxylative dechlorination. Catechol intermediate and pathway was identified as the major degradation pathway for phenol and 2-CP, while 4-chlorocatechol pathways were more important for 4-CP and 2,4-DCP. The formation of polymeric dimers and trimers by all compounds was pronounced at alkaline pH. Heterogeneous catalytic ozonation using β-FeOOH reduced ozonation time for 4-CP by 32%. Mechanism for β-FeOOH/ozone catalysis showed that the catalyst suffered reductive dissolution in acidic pH and the kinetics of 4-CP removal using the catalyst was best described using a two stage kinetic model. The first stage was attributed to heterogeneous catalysis of ozone breakdown on β-FeOOH surface generating faster reacting radicals, while the second stage was due to homogeneous catalysis by reduced Fe2+ ions in solution. β-FeOOH stabilized on NiO at a 5% ratio exhibited superior catalytic property compared to the other tested composites. Characterization by high-resolution transmission electron microscopy (HRTEM) affirmed a β-FeOOH-NiO bonded interfaced composite which was stable as a
iv
catalyst over four (4) recycle runs. The mechanism of operation of the composite was via an increased ozone breakdown to radicals as monitored via photoluminescence experiments. The composite material produced satisfactory results when tested on real wastewater samples. Results from this study contribute to the current understanding on reaction mechanisms for ozone with phenols and chlorophenols, for the first time monitoring time captured intermediates via liquid chromatography-mass spectrometric method, which preserves the integrity of reaction intermediates. Also this study proposes heterogeneous catalysts; β-FeOOH and β-FeOOH bonded composites as possible improvements for simple ozone based water purification systems.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:cput/oai:localhost:20.500.11838/2510 |
Date | January 2016 |
Creators | Oputu, Ogheneochuko Utieyin |
Contributors | Fakoti, Olalekan S., Prof |
Publisher | Cape Peninsula University of Technology |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/za/ |
Page generated in 0.0083 seconds