Return to search

Geographic and temporal variation in the genetic mating systems of pipefish

Understanding the processes that govern mating behaviors is a fundamental goal of evolutionary biology and behavioral ecology. Population-level patterns of mate acquisition and offspring production, otherwise known as the genetic mating system, play a central role in the sexual selection on morphological and behavioral traits and may facilitate speciation. The central hypothesis of this research is that variation in environmental conditions, such as temperature, turbidity, and habitat, and demographic influences such as population density, sex ratios and temporal availability of mates, may limit mating and reproductive success in a predictive manner. Therefore the goal of this dissertation is to examine the contributions of geographic and temporal variation on the plasticity of the genetic mating system in two species of pipefish. The first study examined whether meaningful variation in the genetic mating system exists between two natural populations of the dusky pipefish, Syngnathus floridae. Results of this investigation provide evidence that the genetic mating system differs among different geographic locations. The second study considered the relative contributions of environmental conditions and population demographics on differences in the genetic mating system of dusky pipefish from five natural populations. The results of this investigation show strong trends for demographic and environmental factors to strongly influence the genetic mating system between populations. The third study considered how variation in the number of available mates predicts the outcome of sexual selection during the course of a breeding season in the broad-nosed pipefish, Sygnathus typhle. The results of this study indicate a strong influence of the operational sex ratio on the genetic mating system. In addition to these studies, a study was conducted to investigate whether phylogeographic relationships may be responsible for geographic variation in the genetic mating system of the dusky pipefish of pipefish. Mitochondrial DNA analysis does not substantiate subspecies designations for this species and microsatellite analysis show a clear pattern of isolation by distance. Taken together, these studies significantly enhance the understanding of how mating systems are organized over broad environmental gradients and temporal/spatial scales and to the evolution of sexual selection on the whole.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-1972
Date02 June 2009
CreatorsMobley, Kenyon Brice
ContributorsJones, Adam G.
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0019 seconds