Shape memory alloys (SMAs) are a new generation material which exhibits unique nonlinear deformations due to a phase transformation which allows it to return to its original shape after removal of stress or a change in temperature. It shows a shape memory effect (martensitic condition) and pseudoelasticity (austenitic condition) properties depends on various heat treatment conditions. The reason for these properties depends on phase transformation through temperature changes or applied stress. Many technological applications of austenite SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this thesis, I investigated two important mechanical feature to fatigue behavior in pseudoelastic NiTi SMA wires using high energy synchrotron radiation X-ray diffraction (SR-XRD). The first of these involved simple bending and the second of these involved relaxation during compression loading. Differential scanning calorimetry (DSC) was performed to identify the phase transformation temperatures. Scanning electron microscopy (SEM) images were collected for the initial condition of the NiTi SMA wires and during simple bending, SEM revealed that micro-cracks in compression regions of the wire propagate with increasing bend angle, while tensile regions tend to not exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (100), (110), and (101) planes, intensities and residual strain values exhibit strong anisotropy depending upon whether the sample is in compression or tension during simple bending. This research provides insight into two specific mechanical features in pseudoelastic NiTi SMA wires.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc848138 |
Date | 12 1900 |
Creators | Zhang, Baozhuo |
Contributors | Young, Marcus L., Dahotre, Narendra B., Aouadi, Samir |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | x, 53 pages : illustrations, Text |
Rights | Public, Zhang, Baozhuo, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0023 seconds