Statistical modelling has become a ubiquitous tool for analysing of morphological variation of bone structures in medical images. For radiological images, the shape, relative pose between the bone structures and the intensity distribution are key features often modelled separately. A wide range of research has reported methods that incorporate these features as priors for machine learning purposes. Statistical shape, appearance (intensity profile in images) and pose models are popular priors to explain variability across a sample population of rigid structures. However, a principled and robust way to combine shape, pose and intensity features has been elusive for four main reasons: 1) heterogeneity of the data (data with linear and non-linear natural variation across features); 2) sub-optimal representation of three-dimensional Euclidean motion; 3) artificial discretization of the models; and 4) lack of an efficient transfer learning process to project observations into the latent space. This work proposes a novel statistical modelling framework for multiple bone structures. The framework provides a latent space embedding shape, pose and intensity in a continuous domain allowing for new approaches to skeletal joint analysis from medical images. First, a robust registration method for multi-volumetric shapes is described. Both sampling and parametric based registration algorithms are proposed, which allow the establishment of dense correspondence across volumetric shapes (such as tetrahedral meshes) while preserving the spatial relationship between them. Next, the framework for developing statistical shape-kinematics models from in-correspondence multi-volumetric shapes embedding image intensity distribution, is presented. The framework incorporates principal geodesic analysis and a non-linear metric for modelling the spatial orientation of the structures. More importantly, as all the features are in a joint statistical space and in a continuous domain; this permits on-demand marginalisation to a region or feature of interest without training separate models. Thereafter, an automated prediction of the structures in images is facilitated by a model-fitting method leveraging the models as priors in a Markov chain Monte Carlo approach. The framework is validated using controlled experimental data and the results demonstrate superior performance in comparison with state-of-the-art methods. Finally, the application of the framework for analysing computed tomography images is presented. The analyses include estimation of shape, kinematic and intensity profiles of bone structures in the shoulder and hip joints. For both these datasets, the framework is demonstrated for segmentation, registration and reconstruction, including the recovery of patient-specific intensity profile. The presented framework realises a new paradigm in modelling multi-object shape structures, allowing for probabilistic modelling of not only shape, but also relative pose and intensity as well as the correlations that exist between them. Future work will aim to optimise the framework for clinical use in medical image analysis.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/33746 |
Date | 10 August 2021 |
Creators | Fouefack, Jean-Rassaire |
Contributors | Burdin, Valérie, Mutsvangwa, Tinashe, Borotikar, Bhushan, Douglas, Tania |
Publisher | Faculty of Health Sciences, Division of Biomedical Engineering |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Doctoral Thesis, Doctoral, PhD |
Format | application/pdf |
Page generated in 0.0116 seconds