The effect of mechanical shear on brewing yeast was investigated with a focus on losses incurred through cell rupture and viability loss. The influence of various environmental conditions was studied with regards to the influence on Saccharomyces cerevisiae's ability to resist mechanical shear. Further investigation was performed in order to locate a structure within the yeast cell that contributes to mechanical shear resistance. / It was found that yeast cells grown anaerobically in limited glucose media were more prone to losses in cell viability than cells grown aerobically in the same media, when subjected to mechanical shear. Cells grown anaerobically in high glucose concentrations and allowed to ferment the media to exhaustion were slightly more resistant to mechanical shear compared to cells grown anaerobically without fermentation in minimal glucose media. Higher ethanol concentrations lead to marginally decreased resistance to mechanical shear. / Cell walls of S. cerevisiae were partially digested or extracted using enzymatic treatment or chemical attack. It was found that while the outer mannoprotein layer does not contribute significantly, the inner beta-(1 → 3)-glucan structure plays a significant role in resistance to mechanical shear.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.33036 |
Date | January 2001 |
Creators | Van Bergen, Barry. |
Contributors | Sheppard, John (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Agricultural and Biosystems Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001846340, proquestno: MQ75350, Theses scanned by UMI/ProQuest. |
Page generated in 0.0018 seconds