Return to search

Spatially traveling waves in a two-dimensional turbulent wake.

Hot-wire measurements taken in the turbulent wake of a flat plate are presented. Symmetrical and antisymmetrical perturbations at various amplitudes and frequencies were introduced into the wake by small flap oscillations. As predicted by linear stability theory, the sinuous (antisymmetric) mode was observed to be more significant than the varicose (symmetric) mode. When the amplitude of the perturbation was low, the spatial development of the introduced coherent perturbation was predicted well by linear stability theory. At high forcing levels, the wake spreading showed dramatic deviations from the well known square-root behavior of the unforced case. Measured coherent Reynolds stresses changed sign in the neighborhood of the neutral point of the perturbation, as predicted by the linear theory. However, the linear theory failed to predict the disturbance amplitude and transverse shapes close to the neutral point. Some nonlinear aspects of the evolution of instabilities in the wake are discussed. Theoretical predictions of the mean flow distortion and the generation of the first harmonic are compared to experimental measurements. Given the unforced flow and the amplitude of the fundamental wave, the mean flow distortion and the amplitude of the first harmonic are predicted remarkably well.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184811
Date January 1989
CreatorsMarasli, Barsam.
ContributorsChampagne, Francis H., Wygnanski, I. J., Kerschen, Edward J.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds