電離層延遲為精密GPS定位及導航的主要誤差來源之一,為了減弱電離層延遲對GPS定位及導航的影響,可以利用雙頻GPS觀測量構建即時的區域電離層模型,以提供即時的電離層延遲誤差改正參數,修正因電離層延遲效應造成的定位及導航誤差。
本研究以台灣地區雙頻GPS觀測量,採用相位水準技術估算全電子含量(TEC)、修正的單站演算法估計各GPS衛星及接收儀之L1/L2差分延遲及以UNSW網格式演算法構建區域的電離層模型。並進而求得適合台灣南部地區網格式電離層模型之較佳網格大小及探討使用那些內政部衛星追蹤站的觀測資料,便可有效建立台灣地區的電離層模型。 / The ionospheric delay is one of the main sources of error in precise GPS positioning and navigation. The magnitude of the ionospheric delay is related to the Total Electron Content (TEC) along the radio wave path from a GPS satellite to the ground receiver. The TEC is a function of many variables, including long and short term changes in solar ionising flux, magnetic activity, season of the year, time of day, user location and viewing direction. A dual-frequency GPS receiver can eliminate (to the first order) the ionospheric delay through a linear combination of L1 and L2 observables. However, the majority of civilians use low-cost single-frequency GPS receivers that cannot use this option. Consequently, it is beneficial to estimate ionospheric delays over the region of interest, in real-time, in support of single-frequency GPS positioning and navigation applications.
In order to improve real-time regional ionosphere modelling performance, a grid-based algorithm is proposed. Data from the southern Taiwan region GPS network were used to test the ionosphere modelling algorithms. From the test results described here, it is shown that the performance of real-time regional ionosphere modelling is improved significantly when the proposed algorithm is used.
Identifer | oai:union.ndltd.org:CHENGCHI/G0089257022 |
Creators | 吳相忠, Wu,Shiang Chung |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0028 seconds