Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l'analyse harmonique non commutative. Elle est constituée de trois parties. La première partie démontre l'analogue non commutatif de l'inégalité de John-Nirenberg et la décomposition atomique pour les martingales non commutatives. Ces résultats étendent et améliorent ceux qui existent déjà, et correspondent exactement à ceux que l'on connaît dans le cas classique. La deuxième partie est consacrée à l'étude des espaces de Hardy à valeurs opérateurs via la méthode d'ondelettes. Il est montré que les espaces de Hardy définis par ondelettes coïncident avec ceux définis par les fonctions carrées de Littlewood-Paley et Lusin. Cette approche est similaire à celle du cas des martingales non commutatives, mais l'utilisation des outils de martingales en analyse harmonique permet une démonstration plus rapide. Dans la troisième partie, nous nous tournons vers des applications de la théorie bien établie des espaces de Hardy, c'est-à-dire des opérateurs de Calderón-Zygmund (OCZ pour abréviation) associés à des noyaux à valeurs matricielles. On obtient des estimations de type faible (1, 1) pour des OCZ dyadiques parfaites et des shifts de Haar annulateurs associés à des noyaux non commutatifs, ainsi que des estimations de type H1 → L1 pour des OCZ arbitaires d'après une décomposition d'une fonction en ligne/colonne. En conjonction avec L∞ → BMO, nous établissons certaines estimations de type Lp. Cette approche s'applique aussi à des paraproduits et des transformées de martingales avec des symboles et coefficients non commutatifs respectivement.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00979472 |
Date | 29 September 2012 |
Creators | Hong, Guixiang |
Publisher | Université de Franche-Comté |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds