Return to search

Instability and Transition on a Sliced Cone with a Finite-Span Compression Ramp at Mach 6

<div>Initial experiments on separated shock/boundary-layer interactions were carried out within the Boeing/AFOSR Mach-6 Quiet Tunnel. Measurements were made of hypersonic laminar-turbulent transition within the separation above a compression corner. This wind tunnel features freestream fluctuations that are similar to those in</div><div>flight. The present work focuses on the role of traveling instabilities within the shear layer above the separation bubble.</div><div>A 7 degree half-angle cone with a slice and a finite-span compression ramp was designed and tested. Due to a lack of space for post-reattachment sensors, early designs of this</div><div>generic geometry did not allow for measurement of a post-reattachment boundary layer. Oil flow and heat transfer measurements showed that by lengthening the ramp, the post-reattachment boundary layer could be measured. A parametric study was completed to determine that a 20 degree ramp angle caused reattachment at 45% of the</div><div>total ramp length and provided the best flow field for boundary-layer transition measurements.</div><div>Surface pressure fluctuation measurements showed post-reattachment wave packets and turbulent spots. The presence of wave packets suggests that a shear-layer</div><div>instability might be present. Pressure fluctuation magnitudes showed a consistent transition Reynolds numbers of 900000, based on freestream conditions and distance</div><div>from the nosetip. Pressure fluctuations grew exponentially from less than 1% to roughly 10% of tangent-wedge surface pressure during transition.</div><div>A high-voltage pulsed plasma perturber was used to introduce controlled disturbances into the boundary layer. The concept was demonstrated on a straight 7 degree half-angle circular cone. The perturbations successfully excited the second-mode instability at naturally unstable frequencies. The maximum second-mode amplitudes prior to transition were measured to be about 10% of the mean surface static pressure. </div><div>The plasma perturber was then used to disturb the boundary layer just upstream of the separation bubble on the cone with the slice and ramp. A traveling instability was measured post-reattachment but the transition location did not change for any tested condition. It appears that the excited shear-layer instability was not the dominant mechanism of transition.</div>

  1. 10.25394/pgs.12235013.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/12235013
Date04 May 2020
CreatorsGregory R McKiernan (8793053)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/Instability_and_Transition_on_a_Sliced_Cone_with_a_Finite-Span_Compression_Ramp_at_Mach_6/12235013

Page generated in 0.0023 seconds