The aim of this master’s thesis is to evaluate the effect of shock absorber on vehicle limits. At the beginning of the thesis, shock absorber properties were described. Then computational model was created and manoeuvres for shock absorber behaviour were defined. Created mathematical model is based on quarter model of a car and excitation in form of road with a random profile is an essential part of the model. This model was used for evaluation of heave. After heave analysis, shock absorber behaviour during drive was investigated. Drive conditions were defined as set of handling manoeuvres. For the drive investigation, complete multibody virtual model of racing car was used. Based on drive investigation analysis, optimal damping characteristics for each manoeuvre were found. Furthermore, each optimal characteristic was compared for different manoeuvres. Obtained results were compared. As a conclusion, compromise damping characteristic was suggested with the aim to fit the combination of all defined drive conditions. Final part of the thesis was aimed at validation of the computational model. Data measured during real drive were used as an input for this validation.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417730 |
Date | January 2020 |
Creators | Jurka, Adam |
Contributors | Blaťák, Ondřej, Hejtmánek, Petr |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds