We pursue topics in optics that follow three major themes; time averaged dynamics with the associated Effective Hamiltonian theory, quantification and transformation of polarization, and periodicity within quantum circuits.
Within the first theme, we develop a technique for finding the dynamical evolution in time of a time averaged density matrix. The result is an equation of evolution that includes an Effective Hamiltonian, as well as decoherence terms that sometimes manifest in a Lindblad-like form. We also apply the theory to examples of the AC Stark Shift and Three-Level Raman Transitions.
In the theme of polarization, the most general physical transformation on the polarization state has been represented as an ensemble of Jones matrix transformations, equivalent to a completely positive map on the polarization matrix. This has been directly assumed without proof by most authors. We follow a novel approach to derive this expression from simple physical principles, basic coherence optics and the matrix theory of positive maps.
Addressing polarization measurement, we first establish the equivalence of classical polarization and quantum purity, which leads to the identical structure of the Poincar\' and Bloch spheres. We analyze and compare various measures of polarization / purity for general dimensionality proposed in the literature, with a focus on the three dimensional case. % entanglement?
In pursuit of the final theme of periodic quantum circuits, we introduce a procedure that synthesizes the circuit for the simplest periodic function that is one-to-one within a single period, of a given period p. Applying this procedure, we synthesize these circuits for p up to five bits. We conjecture that such a circuit will need at most n Toffoli gates, where p is an n-bit number.
Moreover, we apply our circuit synthesis to compiled versions of Shor's algorithm, showing that it can create more efficient circuits than ones previously proposed. We provide some new compiled circuits for experimentalists to use in the near future. A layer of "classical compilation" is pointed out as a method to further simplify circuits. Periodic and compiled circuits should be helpful for creating experimental milestones, and for the purposes of validation.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/43570 |
Date | 09 January 2014 |
Creators | Gamel, Omar |
Contributors | James, Daniel |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds