Return to search

Negative frequency waves in optics : control and investigation of their generation and evolution

This thesis is concerned with various methods for the control and investigation of pulse dynamics in a Photonic Crystal Fibre (PCF) and of the radiation driven by a short pulse. In particular the focus is on pulses in the anomalous dispersion region which would form solitons in the absence of higher order effects. Several different types of radiation can be driven by such pulses if they are perturbed by higher order dispersive and non-linear effects - for example Resonant Radiation (RR) and Negative Resonant Radiation (NRR) two dispersive waves which gain energy at the expense of the pulse. The feature of NRR which is of particular importance is that it is the first observed example of a coupling between positive and negative frequencies in optics. This has only been possible due to recent advances in fields such as PCFs, lasers and analogue systems. As with many scientific discoveries, NRR was found by bringing together ideas and techniques from these different fields. Both the pulse and the driven radiation are investigated using a number of different pulse and PCF parameters. These include power, chirp, polarisation and PCF dispersion. These are used to vary the wavelengths at which the driven radiation occurs as well as its generation efficiency. Furthermore the power and chirp are used to vary where in the PCF the driven radiation is generated by controlling where the driving pulse compresses and spectrally expands. This property is used to investigate different stages in the evolution of the pulse and driven radiation as well as to optimise the generation efficiency of the driven radiation.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:644804
Date January 2014
CreatorsMcLenaghan, Joanna Siân
ContributorsKönig, Friedrich
PublisherUniversity of St Andrews
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10023/6532

Page generated in 0.007 seconds