This dissertation proposes two novel manifold graph-based ranking systems for Content-Based Image Retrieval (CBIR). The two proposed systems exploit the synergism between relevance feedback-based transductive short-term learning and semantic feature-based long-term learning to improve retrieval performance. Proposed systems first apply the active learning mechanism to construct users' relevance feedback log and extract high-level semantic features for each image. These systems then create manifold graphs by incorporating both the low-level visual similarity and the high-level semantic similarity to achieve more meaningful structures for the image space. Finally, asymmetric relevance vectors are created to propagate relevance scores of labeled images to unlabeled images via manifold graphs. The extensive experimental results demonstrate two proposed systems outperform the other state-of-the-art CBIR systems in the context of both correct and erroneous users' feedback.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-3126 |
Date | 01 December 2013 |
Creators | Chang, Ran |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0018 seconds