Return to search

Studies on Two Genomic Variants of Taura Syndrome Virus: Infection under Hyperthermic Conditions and Detection with a Novel Monoclonal Antibody

Taura syndrome (TS) is one of the most devastating diseases affecting the shrimp farming industry worldwide. The causative virus, Taura syndrome virus (TSV), has been identified. My work is centred on the development of monoclonal antibodies against TSV. I have also characterized a novel variant of the virus from Venezuela and evaluated the effect of hyperthermia on TSV infection. This work has resulted in 3 manuscripts, which constitute the core of this dissertation. The taxonomy throughout this dissertation is done according to Holthuis (1980).The first manuscript describes the production of a monoclonal antibody reacting with the Belize strain of TSV. The antibody, MAb 2C4, exhibits good sensitivity and specificity for TSV in immunohistochemistry (IHC) and dot blot immunoassay. MAb 2C4 reacted with the TSV-HI94, TSV-SI98 and TSV-BZ02 variants, but not with the TSV-VE05 and TSV-TH05 variants. This antibody adds and improves tools to those available for TSV diagnosis.Chapter three describes a relatively novel variant of TSV from Venezuela, which was characterized by our laboratory. By genetic sequencing, this new isolate exhibits a 94% similarity with TSV-HI94. IHC, dot blot immunoassay and bioassays were also performed. While processed samples reacted only weakly with the TSV monoclonal antibody MAb 1A1, the virus in its native state reacted strongly with the antibody. In bioassays, TSV-VE05 presented mortality comparable to TSV-HI94 in Penaeus vannamei. These data confirm the presence of TSV in Venezuela and that a new variant of the virus was responsible for the outbreak of TS.In chapter four, the behavior of TSV infection under hyperthermic conditions was examined. I compared the susceptibility of Kona stock P. vannamei to the infection by two variants of TSV under hyperthermic conditions (32oC). Shrimp, infected with TSV-HI94, were resistant to infection at high temperature. However, under the same hyperthermic conditions, the challenged shrimp were fully susceptible to the infection by TSV-BZ02. This susceptibility to TSV-BZ02 at higher temperatures was independent both of the route of infection and of the salinity of water. I conjecture that TSV-BZ02 might be a temperature permissible mutant of TSV.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195556
Date January 2008
CreatorsCote, Isabelle
ContributorsLightner, Donald V, Lightner, Donald V., Poulos, Bonnie T., Cusanovich, Michael A., Dieckmann, Carol L., Riggs, Michael W.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0016 seconds