Return to search

Creep and Shrinkage of a High Strength Concrete Mixture

In addition to immediate elastic deformations, concrete undergoes time-dependent deformations that must be considered in design. Creep is defined as the time-dependent deformation resulting from a sustained stress. Shrinkage deformation is the time-dependent strain that occurs in the absence of an applied load. The total strain of a concrete specimen is the sum of elastic, creep, and shrinkage strains.

Several test beams for the Pinner's Point Bridge have been produced by Bayshore Concrete Products Corp., in Cape Charles, VA. These beams feature high strength concrete mix designs with specified 28-day compressive strengths of 55.2 MPa (8,000 psi) and 69.0 MPa (10,000 psi). These test beams were equipped with thermocouples to track interior concrete temperatures, and vibrating wire gages placed at the center of prestressing to record changes in strain.

Laboratory creep and shrinkage testing was conducted on specimens prepared with identical materials and similar mixture proportions to those used at Bayshore. The temperature profile from the test beams during steam curing was used to produce match-cured specimens for laboratory testing. Two match cure batches were produced, along with two standard cure batches. Creep specimens from each batch were placed in the creep room and loaded to 30 percent of their after-cure compressive strength. The creep room had a temperature of 23.0 ± 1.7 °C (73.4 ± 3 ºF) and relative humidity of 50 ± 4 %. Companion shrinkage specimens were also placed in the creep room. Measurements were taken on the creep and shrinkage specimens using a Whittemore gage. Four cylinders were also equipped with embedded vibrating wire gages (VWGs) so that the interior and exterior strains could be compared. The Whittemore and VWG elastic and creep strains were similar, while the VWGs recorded significantly less shrinkage.

The measured creep and shrinkage strains were compared to seven different models to determine which model was the most accurate. The models considered were ACI 209, ACI 209 modified by Huo, CEB Model Code 90, AASHTO-LRFD, Gardner GL2000, Tadros, and Bazant B3. The ACI 209 modified by Huo was most accurate in predicting time-dependent strains. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32743
Date22 May 2003
CreatorsTownsend, Bradley Donald
ContributorsCivil Engineering, Weyers, Richard E., Cousins, Thomas E., Roberts-Wollmann, Carin L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationTownsend_Thesis.pdf

Page generated in 0.0026 seconds