The purpose of this study explores the sound propagation in very shallow water to understand the environment quality of the Si-Tzi Marine Test Field. Very shallow water acoustics characterized by that sound wave will have a dramatic interaction between the bottoms and the propagation of wave and bottom with a high degree of correlation. Those types of environment are concentrated in the west coast of Taiwan.
Analysis of actual acoustic data from the ocean obtain and to use "OASES" simulation that an applied acoustic tool. Expect to understand the phenomenon of water acoustic propagation in the very shallow. The Si-Tzi marine test field had detailed environmental information by previously study. In experiment process, the hydrophone "iTC-6050c" receiving broadband sound source "UW350" signal. The use of personal computer with DAQ card for data acquisition and control. The source in the research vessel was moored 20 m below sea, at the same time to launch three consecutive single (frequency signal 350 Hz, 800 Hz, and 1250 Hz). Reception of signals in order to drift the way. Measured at different frequencies in very shallow water of the transmission loss. The results showed that the results of the current measurement and simulation in line with the follow-up study will be measured "transmission loss" to do to Inversion for geoacoustic parameters in very shallow water.
Then obtained "geoacoustic parameters" Comparison of sea-bed surface sampling results. Confirmation "geoacoustic inversion technique" is correct.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0826109-145401 |
Date | 26 August 2009 |
Creators | Xiao, Ming-Heng |
Contributors | Ching-Jer Huang, Jin-Yuan Liu, Chen-Fen Huang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0826109-145401 |
Rights | off_campus_withheld, Copyright information available at source archive |
Page generated in 0.0017 seconds