Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications.
Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies:
• Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz).
• Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation.
• Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques.
• A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed.
• A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc.
• For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc.
• An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain.
• All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements.
• Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure.
• The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents
Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Technology 7
2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12
2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Low-power Low-noise Amplifiers 25
3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27
3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41
3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48
3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55
3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60
3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Low-power Down-conversion Mixers 73
4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74
4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74
4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77
4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5 Low-power Multipliers 87
5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89
5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93
5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6 Low-power Receivers 101
6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104
6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111
6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116
6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7 Conclusions 133
7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Bibliography 135
List of Figures 149
List of Tables 157
A Derivation of the Gm 159
A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B Derivation of Yin in the stability analysis 163
C Derivation of Zin and Zout 165
C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
D Derivation of the cascaded oP1dB 169
E Table of element values for the designed circuits 171
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79641 |
Date | 20 June 2022 |
Creators | Zhang, Yaxin |
Contributors | Schröter, Michael, Spirito, Marco, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | info:eu-repo/grantAgreement/Electronic Components and Systems for European Leadership/Horizon2020/737454//TowARds Advanced bicmos NanoTechnology platforms for rf and thz applicatiOns/TARANTO |
Page generated in 0.0034 seconds