The thermomechanical properties of monolayer graphene and the interfacial interactions between graphene and an SiO₂ substrate are investigated in this dissertation using a multiscale approach. The temperature dependent mechanical behavior of graphene with thermal fluctuations is studied by statistical mechanics analysis under harmonic approximation, which is then compared to molecular dynamics simulations. It is found that the amplitude of thermal fluctuation depends nonlinearly on the graphene size due to anharmonic interactions between bending and stretching modes, but a small positive pre-strain could suppress fluctuation amplitude considerably and results in very different scaling behavior. The thermal expansion of graphene depends on two competing effects: positive expansion due to in-plane modes and negative expansion due to out-of-plane fluctuations. The in-plane stress-strain relation of graphene becomes nonlinear even at infinitesimal strain due to the entropic contribution. Consequently, the modulus of graphene depends on strain non-monotonically, with strain stiffening followed by intrinsic softening. Moreover, it is found that the thermomechnical behavior of graphene is dependent on its interactions with environment such as supporting substrate. The interfacial interactions between graphene and SiO₂ substrate is investigated in terms of three perspectives. Firstly, the interaction mechanisms between graphene and SiO₂ substrate are studied by density functional theory (DFT). The dispersion interaction is found to be the predominant mechanism, and the interaction strength is strongly influenced by changes of SiO₂ surface structures due to surface reactions with water. The adhesion energy is reduced when the reconstructed SiO₂ surface is hydroxylated, and further reduced when covered by a monolayer of adsorbed water molecules. Next, we study the interfacial interactions between graphene and a wet substrate that is covered by a liquid-like water film. During the separation of graphene from the wet substrate, MD simulations show evolution of the water from a continuous film to discrete islands. The water bridging effects are further described by continuum models. Finally, a continuum model is developed to predict how the surface roughness may affect the adhesion between graphene membranes and their substrate. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/26941 |
Date | 28 October 2014 |
Creators | Gao, Wei, active 21st century |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.002 seconds