The sialidases are a group of glycosyl hydrolases that specifically remove terminal sialic acid (Neu5Ac) residues from various glycans. In the two common human pathogenic bacteria Streptococcus pneumoniae and Pseudomonas aeruginosa, these enzymes have been shown to be key virulence factors directly involved in bacterial colonization and infection. However, little is known about their detailed structural and mechanistic features and lack of this information significantly slows down the progress of new drug discovery targeting these enzymes. Therefore, we embarked structural and kinetic studies towards the three distinct sialidases (designated as NanA, NanB and NanC) from S. pneumoniae, as well as the putative sialidase (designated as PaNA) from P. aeruginosa. Full-length NanA failed to crystallize due to the presence of some natively disordered regions. The catalytic domain of NanA (CNanA) was therefore subcloned, which was crystallized and the structure was determined to 1.5 Å. CNanA exists as a dimer with close contacts between the two monomers. The second pneumococcal sialidase NanB only shares 24% sequence identity with NanA. Crystal structure of NanB was also determined to 1.7 Å, which exhibits a multi-domain monomeric architecture. In general, the core catalytic domain of both CNanA and NanB adopts the classic six- bladed β-propeller fold (or called sialidase fold), with a set of highly conserved residues stacking around the proposed active sites. NanC is a close homologue of NanB, sharing over 50% sequence identity. However, NanC crystallization is not successful so far. To compare the three sialidases in more detail, a computational NanC model was made based on the structure of NanB. Mapping of the active sites of CNanA and NanB was achieved using Neu5Ac2en, a general sialidase inhibitor as the probe. Although sharing many common features, NanA, NanB and NanC present different topologies around the catalytic centre, give these enzymes a high level of diversity in enzymatic kinetics, substrate specificity and catalytic properties. NMR studies show that NanA acts as a classic hydrolytic sialidase; while NanB is found to be an intermolecular trans-sialidase like the leech sialidase; NanC, however, handles multiple catalytic roles efficiently, which include releasing Neu5Ac2en from α2,3- sialyllactose and hydration of Neu5Ac2en to Neu5Ac with high efficiency. S. pneumoniae thus expresses NanA, NanB and NanC for disparate but cooperative roles. Such a working pattern of three sialidases in one microbe is unusual in nature, which might be essential for pneumococcal pathogenesis at various stages. Based on the crystal structures of CNanA and NanB, preliminary work towards S. pneumoniae sialidases inhibitor design is under way, in which, a variety of techniques, such as the fluorescence-based thermal shift assay, NMR spectroscopy, computational docking and X-ray crystallography, are incorporated in. The crystal structure of PaNA was determined to 1.9 Å. This protein appeared to be a unique trimer in crystal that is associated, in part, by the immunoglobulin-like trimerization domain around a three-fold crystallographic axis. The core catalytic domain of PaNA also presents the conserved sialidase fold. Surprisingly, no sialidase activity was detected with this enzyme. In addition, two key catalytic residues including one of the arginine in the arginine triad and the acid/base catalyst aspartic acid are missing in PaNA. In silico docking suggests that Phe129 may confer substrate selectivity towards pseudaminic acid, which is a specific carbohydrate superficially similar to Neu5Ac, but with different stereochemistry at the C-5 position. Site-directed mutagenesis further confirmed that mutation of Phe129 to alanine could turn PaNA into a poor sialidases. Moreover, the crystal structure of PaNA also indicates that His45, Tyr21 and Glu315 may form a charge relay to compensate the missing aspartic acid. Subsequent mutagenesis and NMR kinetic studies proved His45-Tyr21-Glu315 to be a novel charge relay taking the role of the acid/base catalyst. Therefore, PaNA could be a pseudaminidase with structural and mechanistic variations. This enzyme, together some other uncharacterized fellow proteins, might form a novel subclass in the sialidase superfamily. The various findings in the current projects provide meaningful insights towards several sialidases that have been linked to bacterial virulence, which may contribute to a more intensive understanding of S. pneumoniae and P. aeruginosa pathogenesis.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:552281 |
Date | January 2009 |
Creators | Xu, Guogang |
Contributors | Taylor, Garry L. |
Publisher | University of St Andrews |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10023/778 |
Page generated in 0.0019 seconds