Many environmental stresses result in increased generation of active oxygen species (AOS) in plant cells, leading to the induction of protective mechanisms. In this study, signalling components linking AOS perception to downstream responses were examined, with particular emphasis on H<sub>2</sub>O<sub>2</sub> signalling. All AOS investigated had an early [Ca<sup>2+</sup>]<sub>cyt</sub> peak in common, but differed in other aspects of their Ca<sup>2+</sup> signatures, indicating that the plant is able to discriminate between different types of AOS. An early event in AOS signal transduction may involve changes in the cellular redox balance as reduction of glutathione levels prior to stress application increased the height of the first [Ca<sup>2+</sup>]<sub>cyt</sub> peak. Inhibiting or enhancing the height of the H<sub>2</sub>O<sub>2</sub>-triggered Ca<sup>2+</sup> signature lead to inhibition or enhancement of GST1 and APX1 induction, respectively, demonstrating that the Ca<sup>2+</sup> signature is required for induction of genes encoding antioxidant enzymes. OX1, encoding a putative ser/thr kinase, was shown to be involved in signal transduction in response to H<sub>2</sub>O<sub>2</sub>-generating stresses. Transcript levels of OX1 were increased upon treatment with H<sub>2</sub>O<sub>2</sub> and a range of abiotic and biotic stresses as well as ABA, all of which have been shown to result in H<sub>2</sub>O<sub>2</sub> accumulation. Inhibition of stress-induced [Ca<sup>2+</sup>]<sub>cyt</sub> elevations inhibited OX1 induction, placing the OX1 kinase downstream of Ca<sup>2+</sup> in the signalling chain. OX1 is required for full activation of AtMPKS and AtMPK6 in response to ozone fumigation, indicating that OX1 functions upstream of these MAP kinases. An ox1 null-mutant displayed enhanced susceptibility to infection with a virulent Peronospora parasitica isolate as well as reduced induction of several defence genes. In addition, the ox1 mutant exhibited shorter root hairs and an early flowering phenotype. AOS treatment induced several genes encoding AtERF transcription factors, but did not have an effect on other members of this family. Induction occurred in an ethylene-independent but Ca<sup>2+</sup>-dependent manner.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:270272 |
Date | January 2002 |
Creators | Rentel, Maike Christina |
Contributors | Knight, Marc |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:5dc0b7f5-5aa9-4633-a8dd-89ca2dcb3982 |
Page generated in 0.002 seconds