Return to search

A Unified Decision Framework for Multi-Modal Traffic Signal Control Optimization in a Connected Vehicle Environment

Motivated by recent advances in vehicle positioning and vehicle-to-infrastructure (V2I) communication, traffic signal controllers are able to make smarter decisions. Most of the current state-of-the-practice signal priority control systems aim to provide priority for only one mode or based on first-come-first-served logic. Consideration of priority control in a more general framework allows for several different modes of travelers to request priority at any time from any approach and for other traffic control operating principles, such as coordination, to be considered within an integrated signal timing framework. This leads to provision of priority to connected priority eligible vehicles with minimum negative impact on regular vehicles. This dissertation focuses on providing a real-time decision making framework for multi modal traffic signal control that considers several transportation modes in a unified framework using Connected Vehicle (CV) technologies. The unified framework is based on a systems architecture for CVs that is applicable in both simulated and real world (field) testing conditions. The system architecture is used to design both hardware-in-the-loop and software-in-the-loop CV simulation environment. A real-time priority control optimization model and an implementation algorithm are developed using priority eligible vehicles data. The optimization model is extended to include signal coordination concepts. As the penetration rate of the CVs increases, the ability to predict the queue more accurately increases. It is shown that accurate queue prediction improves the performance of the optimization model in reducing priority eligible vehicles delay. The model is generalized to consider regular CVs as well as priority vehicles and coordination priority requests in a unified mathematical model. It is shown than the model can react properly to the decision makers' modal preferences.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/620993
Date January 2016
CreatorsZamanipour, Mehdi, Zamanipour, Mehdi
ContributorsHead, K. Larry, Head, K. Larry, Son, Young-Jun, Fan, Neng, Wu, Yao-Jan
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds