Return to search

Redução do esforço do usuário na configuração da deduplicação de grandes bases de dados / Reducing the user effort to tune large scale deduplication

A deduplicação consiste na tarefa de identificar quais objetos (registros, documentos, textos, etc.) são potencialmente os mesmos em uma base de dados (ou em um conjunto de bases de dados). A identificação de dados duplicados depende da intervenção do usuário, principalmente para a criação de um conjunto contendo pares duplicados e não duplicados. Tais informações são usadas para ajudar na identificação de outros possíveis pares duplicados presentes na base de dados. Em geral, quando a deduplicação é estendida para grandes conjuntos de dados, a eficiência e a qualidade das duplicatas dependem diretamente do “ajuste” de um usuário especialista. Nesse cenário, a configuração das principais etapas da deduplicação (etapas de blocagem e classificação) demandam que o usuário seja responsável pela tarefa pouco intuitiva de definir valores de limiares e, em alguns casos, fornecer pares manualmente rotulados. Desse modo, o processo de calibração exige que o usuário detenha um conhecimento prévio sobre as características específicas da base de dados e os detalhes do funcionamento do método de deduplicação. O objetivo principal desta tese é tratar do problema da configuração da deduplicação de grandes bases de dados, de modo a reduzir o esforço do usuário. O usuário deve ser somente requisitado para rotular um conjunto reduzido de pares automaticamente selecionados. Para isso, é proposta uma metodologia, chamada FS-Dedup, que incorpora algoritmos do estado da arte da deduplicação para permitir o processamento de grandes volumes de dados e adiciona um conjunto de estratégias com intuito de possibilitar a definição dos parâmetros do deduplicador, removendo os detalhes de configuração da responsabilidade do usuário. A metodologia pode ser vista como uma camada capaz de identificar as informações requisitadas pelo deduplicador (principalmente valores de limiares) a partir de um conjunto de pares rotulados pelo usuário. A tese propõe também uma abordagem que trata do problema da seleção dos pares informativos para a criação de um conjunto de treinamento reduzido. O desafio maior é selecionar um conjunto reduzido de pares suficientemente informativo para possibilitar a configuração da deduplicação com uma alta eficácia. Para isso, são incorporadas estratégias para reduzir o volume de pares candidatos a um algoritmo de aprendizagem ativa. Tal abordagem é integrada à metodologia FS-Dedup para possibilitar a remoção da intervenção especialista nas principais etapas da deduplicação. Por fim, um conjunto exaustivo de experimentos é executado com objetivo de validar as ideias propostas. Especificamente, são demonstrados os promissores resultados alcançados nos experimentos em bases de dados reais e sintéticas, com intuito de reduzir o número de pares manualmente rotulados, sem causar perdas na qualidade da deduplicação. / Deduplication is the task of identifying which objects (e.g., records, texts, documents, etc.) are potentially the same in a given dataset (or datasets). It usually requires user intervention in several stages of the process, mainly to ensure that pairs representing matchings and non-matchings can be determined. This information can be used to help detect other potential duplicate records. When deduplication is applied to very large datasets, the matching quality depends on expert users. The expert users are requested to define threshold values and produce a training set. This intervention requires user knowledge of the noise level of the data and a particular approach to deduplication so that it can be applied to configure the most important stages of the process (e.g. blocking and classification). The main aim of this thesis is to provide solutions to help in tuning the deduplication process in large datasets with a reduced effort from the user, who is only required to label an automatically selected subset of pairs. To achieve this, we propose a methodology, called FS-Dedup, which incorporates state-of-the-art algorithms in its deduplication core to address high performance issues. Following this, a set of strategies is proposed to assist in setting its parameters, and removing most of the detailed configuration concerns from the user. The methodology proposed can be regarded as a layer that is able to identify the specific information requested in the deduplication approach (mainly, threshold values) through pairs that are manually labeled by the user. Moreover, this thesis proposed an approach which would enable to select an informative set of pairs to produce a reduced training set. The main challenge here is how to select a “representative” set of pairs to configure the deduplication with high matching quality. In this context, the proposed approach incorporates an active learning method with strategies that allow the deduplication to be carried out on large datasets. This approach is integrated with the FS-Dedup methodology to avoid the need for a definition of threshold values in the most important deduplication stages. Finally, exhaustive experiments using both synthetic and real datasets have been conducted to validate the ideas outlined in this thesis. In particular, we demonstrate the ability of our approach to reduce the user effort without degrading the matching quality.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/94627
Date January 2014
CreatorsDal Bianco, Guilherme
ContributorsGalante, Renata de Matos, Heuser, Carlos Alberto
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds