Return to search

Complexes de fer bio inspirés pour la catalyse d'oxydation : systèmes homogènes et supportés / Bio-inspired iron complexes for oxidation catalysis : homogeneous and supported systems

Certaines métalloenzymes catalysent l’oxydation de petites molécules organiques, dans des conditions douces (par activation du dioxygène à température et pression ambiante). Ce travail a pour but d’améliorer l’utilisation et l’efficacité catalytique des complexes de fer mimant cette activité.D’abord, par fonctionnalisation du ligand, un des complexes les plus efficaces pour catalyser l’oxydation de substrats aromatiques par H2O2, a pu être greffé dans des mésopores de silice. Ce matériau est utilisé comme support de catalyseur, en raison de sa grande surface spécifique et de sa chimie de surface versatile. Par ailleurs, la méthode de synthèse permet de structurer la taille des cavités formées, à l’aide d’un surfactant utilisé comme modèle. Le contrôle du nombre de sites catalytiques sur la surface est rendu possible par la procédure qui exploite le concept du pochoir moléculaire. Le confinement du catalyseur dans les pores pourrait être mis à profit pour former des produits à haute valeur ajoutée. En parallèle, ce complexe a aussi été greffé sur des billes de silices, un matériau moins élaboré pouvant être utilisé pour la dégradation de polluants. L’élaboration de ce type de catalyseurs supportés a nécessité de nombreuses caractérisations : analyses élémentaires, spectroscopies RMN, IR, XPS, UV-vis, RPE, isotherme d’adsorption d’azote, ATG, DRX sur poudre. Différentes méthodes de greffage ont été ainsi développées, et leur efficacité a été comparée. L’activité en catalyse d’oxydation de ces différents systèmes a aussi été évaluée.Concernant le développement des catalyseurs homogènes, le renforcement des positions  des pyridines du ligand a permis l’obtention de nouveaux complexes de fer, possédant une meilleure stabilité pour réaliser des réactions catalytiques en milieu homogène et des propriétés structurales, spectroscopiques, chimiques et catalytiques analogues aux complexes de la même famille.Enfin, un autre complexe de fer a été mis en jeu dans un procédé électrochimique utilisant le dioxygène en présence de protons pour catalyser l’hydroxylation de substrats aromatiques. / Some metalloenzymes catalyze oxidation of small organic molecules in mild conditions (via dioxygen activation at ambient temperature and pressure). This work aims to improve the use and catalytic efficiency of some of the iron complexes mimicking this activity.First, by ligand functionalization, one of the most efficient complexes catalyzing aromatic substrates oxidation by H2O2, was grafted in mesostructured porous silicas. This type of materials was used to support the iron catalyst, because of their large specific area, as well as their versatile surface chemistry. Furthermore, the method of synthesis allows to tune the size of cavities, through the use of surfactant as templates. Control of the number of catalytic sites on surface is made possible by the procedure that exploits the molecular stencil patterning technique. The confinement of catalyst in the pores could be implemented to form products with high added value. In parallel, this complex was also grafted in fumed silicate, a simpler material, that could be used to degradation of polluants. The development of this type of supported catalyst required many caracterisations : elemental analysis, NMR, IR, XPS, UV-vis and EPR spectroscopies, TGA, nitrogen sorption isotherms, powder X-ray diffraction. Different grafting methods have been followed, and their efficacy compared. The catalytic activity of the different systems was also evaluated.Concerning the development of homogenous catalysts, the strengthening of pyridine  positions on the ligand has allowed to obtain new iron complexes, having a better stability to realize catalytic reactions in homogenous condition, and structural, spectroscopic, chemical, catalytic properties similar to the complexes of the same family.Finally, another iron complex has been applied in an electrochemical process using dioxygen in the presence of proton to catalyze hydroxylation of aromatic substrates.

Identiferoai:union.ndltd.org:theses.fr/2011PA112270
Date06 December 2011
CreatorsJollet, Véronique
ContributorsParis 11, Banse, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.008 seconds