Return to search

Contribution à la détection de changements dans des séquences IRM 3D multimodales

L'imagerie médicale a profondément influencé à la fois la recherche médicale et la pratique clinique. Elle est aujourd'hui incontournable aussi bien pour l'établissement du diagnostic que pour la mise en place et le suivi d'un traitement thérapeutique. Elle fournit un volume croissant de données tridimensionnelles provenant de modalités d'acquisition différentes (IRM, scanner-X, médecine nucléaire, échographie). Ce volume croissant de données rend délicate et laborieuse la tâche d'interprétation par un expert. Le traitement d'images est un outil permettant une automatisation des tâches et va assister l'expert aussi bien dans l'analyse qualitative que quantitative des images. Dans ce mémoire, nous proposons des techniques automatiques de détection de changements dans des séquences d'images IRM cérébrales. Nous nous intéressons plus particulièrement aux changements d'intensité localisés survenant lors d'évolutions pathologiques telles que les évolutions de lésions en sclérose en plaques (SEP). Les applications médicales des techniques développées ici sont nombreuses: aide au diagnostic, suivi à long terme de l'évolution d'une pathologie, évaluation de l'efficacité thérapeutique d'un médicament, aide à la prise de décision en vue d'une intervention chirurgicale. Ce travail de recherche a été mené en étroite collaboration entre le LSIIT (ULP/UMR CNRS 7005) et l'Institut de Physique Biologique (ULP-Hôpitaux Universitaires / UMR CNRS 7004), au sein de l'équipe-projet multi-laboratoires "Imagerie et Robotique Médicale et Chirurgicale" (EPML IRMC). Il a été soutenu par la Ligue Française Contre la Sclérose En Plaques (LFSEP), la société SERONO et la région Alsace. La détection automatique et fiable de changements interimages rencontre d'importantes difficultés rendant impossible la comparaison directe d'images acquises successivement. La position des patients dans l'imageur n'est jamais identique et les paramètres d'acquisition peuvent varier sensiblement entre chaque examen, entraînant, entre autres, des modifications de contraste. La définition même de ce qui doit être détecté est souvent subjective. Dans le cadre spécifique de la détection de changements d'intensité de lésions, des déformations globales de structures anatomiques, telle que l'atrophie cérébrale, peuvent également perturber la comparaison directe des images. Le travail présenté dans cette thèse est centré sur le développement d'outils de traitement d'images permettant de décider quels changements sont statistiquement significatifs ou non. Lorsque l'expert détermine visuellement des changements, il utilise des connaissances a priori, implicites, de haut niveau qui lui permettent de corriger certaines erreurs d'acquisition. Ainsi, il peut compenser visuellement des erreurs de repositionnement et utiliser ses connaissances anatomiques propres pour identifier et rejeter certains artefacts. Nous développons donc ici, des techniques automatiques d'identification et de correction des principaux artefacts (positionnement, déformations, variations d'intensité ...) et nous proposons une technique originale de segmentation du cortex, apportant les informations anatomiques permettant l'amélioration de la détection automatique. Les techniques de traitement d'images proposées ici ont été développées pour l'IRM cérébrale. Cependant, elles sont suffisamment générales pour s'appliquer à d'autres domaines. Notre système de détection de changements a été évalué dans le cadre de l'étude de l'évolution de lésions de sclérose en plaques. Ses performances ont été déterminées sur une grande base d'images multimodales (plus de 200 images FLAIR, RARE et GE3D) de taille $128^3$. L'évaluation a été faite à l'aide d'un protocole impliquant deux experts (neurologues) et utilisant une analyse statistique de type COR Le système automatique a été jugé plus performant que l'expert humain. Dans la première partie de ce manuscrit, nous présentons tout d'abord les éléments d'imagerie IRM et les aspects médicaux nécessaires à la compréhension de l'ensemble de ce travail. Nous décrivons les modalités d'acquisition IRM et les artefacts associés. Cette étape est importante pour la compréhension des imperfections pouvant apparaître et leur correction. Nous présentons ensuite des éléments sur l'anatomie cérébrale et nous décrivons l'apparence prise les différentes structures cérébrales dans les trois modalités IRM considérées. Puis, nous terminons par les pathologies cérébrales, leurs évolutions, et leur aspect en IRM. Les objectifs et les limites de notre approche sont situés par rapport à ce contexte applicatif. Dans une deuxième partie nous décrivons une approche nouvelle de segmentation sous-voxel. Pour décider de la pertinence d'un changement observé, l'expert utilise des connaissances anatomiques. Dans notre système de détection automatique, ces connaissances sont obtenues en segmentant l'image du cerveau. La méthode de segmentation proposée est basée sur l'évolution d'une image de labels de très haute résolution. L'évolution se fait sous l'influence de contraintes statistiques multiples, exprimées dans un cadre de minimisation d'énergie. L'évolution de l'image de labels n'ayant lieu qu'à la frontière entre régions, notre approche est comparable à un système d'évolution de surfaces. Afin de s'adapter aux spécificités de chaque région cérébrale, les contraintes sont paramétrées à l'aide d'un atlas. Celui-ci, composé d'une image de référence et d'images de paramètres, est plaqué sur l'image à segmenter à l'aide d'un recalage déformable multi-échelles. Les contraintes sont classées en deux catégories: les contraintes image (attache aux données) et le modèle a priori. Plusieurs contraintes image, opérant simultanément à des échelles différentes, sont employées. Elles utilisent une description rigoureuse du processus d'acquisition, permettant ainsi d'atteindre à la fois une précision sous-voxel et une convergence globale (à grande échelle). Le modèle a priori est également composé de plusieurs contraintes : une contrainte de distribution relative qui donne la probabilité d'observer un label à une distance donnée d'un autre label et une contrainte d'épaisseur. Notre approche permet d'obtenir une segmentation de haute résolution à partir d'images IRM pouvant être de résolution inférieure. La performance du système de segmentation a été évaluée sur des images simulées et testée sur des images réelles. La troisième partie présente l'ensemble de la chaîne de traitements conduisant à la détection de changements, ainsi que le protocole d'évaluation et les résultats. La chaîne de traitements est constituée d'une première étape de repositionnement et de correction des déformations. Toutes les images de la base sont alignées sur des références soigneusement choisies, d'abord à l'aide d'une méthode de recalage affine itératif robuste, puis à l'aide de recalage déformable. Au cours de la deuxième étape, les deux images à comparer subissent une correction d'intensité non-linéaire ainsi qu'une élimination d'erreurs résiduelles. La méthode de correction d'intensité que nous proposons permet d'établir une fonction de transfert d'intensité non-linéaire en optimisant un critère simple s'appuyant sur des informations de l'histogramme conjoint. Finalement, au cours de la dernière étape, une approche de détection statistique multimodale permet de décider quels changements sont significatifs. Les connaissances anatomiques fournies par la segmentation sont utilisées pour éliminer certaines détections aberrantes. L'ensemble de ces traitements est appliqué de manière entièrement automatique sur une base de plus de 200 images, de modalités différentes, démontrant ainsi la fiabilité des traitements. La validation du système a été menée à l'aide d'un protocole d'évaluation comprenant deux experts (neurologues). Le premier expert ainsi que le système automatique ont procédé indépendamment à un même travail de détection (l'expert opérant manuellement). Le second expert fait ensuite office d'arbitre pour comparer les résultats des deux procédés. L'analyse COR permet une vue synthétique de la performance du détecteur en donnant la probabilité de détection en fonction du nombre de fausses alarmes. Dans un cadre applicatif, les modifications détectées par le système automatique sont ordonnées par vraisemblance décroissante et présentées au neurologue dans un système de visualisation interactif. Ceci permet au médecin de conserver la décision finale, tout en parcourant efficacement et très rapidement les modifications détectées. En annexe nous proposons quelques réflexions sur l'importance du développement logiciel et de sa diffusion dans la recherche en traitement d'images. Nous présentons ensuite ImLib3D, une librairie C++ dédiée à la recherche en traitement d'images volumiques, que nous avons développée dans le cadre de cette recherche. ImLib3D propose à la fois un système de visualisation séparé et une librairie soigneusement conçue à l'aide d'une méthodologie orientée objet et utilisant des concepts modernes s'inspirant de la librairie standard du C++. L'objectif, dans la conception, a été de créer une librairie simple à utiliser par le chercheur, considéré comme le public cible. ImLib3D est distribuée librement (Open Source) et est placée dans un cadre de développement distribué coopératif (sourceforge.net). En conclusion, nous avons élaboré un système complet et opérationnel de détection de changements dans lequel nous avons systématiquement analysé et traité les principaux artefacts gênant la détection.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005163
Date17 December 2003
CreatorsBosc, Marcel
PublisherUniversité Louis Pasteur - Strasbourg I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds