Return to search

Synthesis and Property Optimization of Ordered, Aryl Dense Polysiloxanes Using Boron Catalysis

Silicones are widely used polymeric materials due to their unique properties. The material properties of silicones may be altered by incorporating various organic groups. Traditional methods for linear silicone synthesis involve ring-opening polymerization, which leaves the growing chain susceptible to acid or base mediated chain redistribution and the formation of cyclic monomer byproducts. The Piers-Rubinsztajn (PR) reaction is an alternative siloxane synthetic route that avoids the use of tin- or platinum- based, or of Brønsted acid/base catalysts. Siloxane bond formation is catalyzed by tris(pentafluorophenyl)borane (B(C6F5)3) (R’3Si-H + RO-SiR”3 → R’3Si-O-SiR”3 + RH); alkoxysilanes can be replaced with silanols or alkoxybenzenes.
The catalytic activity of B(C6F5)3 was shown to be hindered by trace water in solution; water acts as a Lewis base coordinating to B(C6F5)3. Since the hydrate-free form of B(C6F5)3 is required to initiate a PR reaction, water can act as an inhibitor. In a somewhat contradictory fashion, water was also shown to react with hydrosilanes via a B(C6F5)3 catalyzed hydrolysis reaction to give silanols, that themselves are reagents for the process.
The reactivity of alkoxysilanes (or aryl ethers) in the PR reaction was found to be much quicker than water. This was exploited in the synthesis of Ax(AB)yAx triblock copolymers. The aryl rich AB core was first synthesized using the PR reaction. Excess silicone condensed via hydrolysis forming the A blocks. This method of exploiting relative reactivity to tune structure was applied to elastomers made using a single linker (eugenol) with multiple functional groups – elastomer morphology was controlled by changing order of addition.
The development of aryl dense silicones is of interest for use in electronic devices. Phenylmethyl homopolymers and highly ordered phenyl pendant copolymers (Ph/Si ratio of 0.5-1.5) were synthesized from monomers to give polymers with high refractive indices (1.51-1.59) and Mw up to 170 kDa. Statistically relevant libraries of aryl functional silicones were developed using combinatorial chemistry in order to analyze their structure-property relationship. Incorporating aromatic groups into silicones worked to elevate thermal stability, refractive index and improve the mechanical strength of silicone rubbers. / Thesis / Doctor of Science (PhD) / Silicone fluids and elastomers possess numerous desirable characteristics which leads to their use in a wide range of applications in the automotive, electronics and biomedical fields, among others. Developing techniques to create well defined, ordered, modified silicones with improved optical properties, mechanical strength and thermal stability was the main focus of this thesis. These objectives were accomplished by incorporating aromatic groups into silicones using boron catalysis. Following the initial (intended) Piers-Rubinsztajn reaction, atmospheric moisture was utilized to promote further polymerization. Statistically relevant libraries of silicone elastomers were prepared using both standard and combinatorial chemistry techniques. This library of elastomers permitted the analysis of trends associated with small changes in elastomer formulation, which could not be accomplished using traditional one-by-one reaction methods in a timely fashion. The modified silicone materials exhibited high refractive indices (up to 1.59), elevated stiffness and improved thermal stability (maintain structure up to 500 °C) when compared to previously synthesized polymers.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24718
Date January 2019
CreatorsSchneider, Alyssa F.
ContributorsBrook, Michael A., Chemistry and Chemical Biology
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0086 seconds