Return to search

Material selection and topology optimization of a shift fork for metal 3D printing

In collaboration with Kongsberg Automotive, the thesis focuses on material selection and redesigning the shift fork for additive manufacturing using topology optimization. The shift fork is a component in the gear shifting mechanism in the automotive industry. The current shift fork at Kongsberg is manufactured from aluminum using die-casting. This design and material do not withstand huge dynamic loads in commercial vehicles. The material to withstand the loading conditions and is widely available across powder manufacturers is selected using the weighted properties method. The topology optimization of the design resulted in a 50 % reduction in mass. The shift fork's two legs undergo uneven load distribution due to eccentricity. The optimized models are simulated using Finite Element Analysis to validate the design. The optimized design is obtained such that the difference in displacement between both legs is within 50 %. Numerous metal powder manufacturers and 3D printing service providers were contacted to understand the current additive manufacturing market.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-479766
Date January 2022
CreatorsAmaralapudi Bala Vardha Raju, Rahul, Thammisetty, Raja Surya Mahesh
PublisherUppsala universitet, Institutionen för materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMATVET Additiv

Page generated in 0.0022 seconds