In collaboration with Kongsberg Automotive, the thesis focuses on material selection and redesigning the shift fork for additive manufacturing using topology optimization. The shift fork is a component in the gear shifting mechanism in the automotive industry. The current shift fork at Kongsberg is manufactured from aluminum using die-casting. This design and material do not withstand huge dynamic loads in commercial vehicles. The material to withstand the loading conditions and is widely available across powder manufacturers is selected using the weighted properties method. The topology optimization of the design resulted in a 50 % reduction in mass. The shift fork's two legs undergo uneven load distribution due to eccentricity. The optimized models are simulated using Finite Element Analysis to validate the design. The optimized design is obtained such that the difference in displacement between both legs is within 50 %. Numerous metal powder manufacturers and 3D printing service providers were contacted to understand the current additive manufacturing market.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-479766 |
Date | January 2022 |
Creators | Amaralapudi Bala Vardha Raju, Rahul, Thammisetty, Raja Surya Mahesh |
Publisher | Uppsala universitet, Institutionen för materialvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | MATVET Additiv |
Page generated in 0.0022 seconds