The design and analysis of an automotive structure is an important stage of the vehicle design process. The structural characteristics have significant impact on the vehicle performance. During the design process it is necessary to have knowledge about the structural characteristics; however in the preliminary design stages detailed information about the structure is not available. During this period of the design process the structure is often simplified to a representative model that can be analyzed and used as the input for the detailed design process. A vehicle model is developed based on the space frame structures where the frame is the load carrying portion of the structure. Preliminary design analysis is conducted using a static load condition applied to the vehicle as pure bending and pure torsion. The deflections of the vehicle based on these loading conditions are determined using the finite element method which has been implemented in developed software. The structural response, measured as the bending and torsion stiffness, is used to evaluate the structural design. An optimization program is implemented to improve the structural design with the goal of reducing weight while increasing stiffness. Following optimization the model is completed by estimating suitable plate thicknesses using a method of substructure analysis. The output of this process will be an optimized structural model with low weight and high stiffness that is ready for detailed design. / UOIT
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOSHDU.10155/305 |
Date | 01 June 2012 |
Creators | Tebby, Steven |
Contributors | Barari, Ahmad, Esmailzadeh, Ebrahim |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds