Statistical analysis is based on an elementary paradigm and the relationship between probabilistic inductive inference, generation and validation of models, and the use of such information in decisions within a specific domain of knowledge. Additionally, techniques can be used to design specific experiments, such as the multi-environmental trials MET, to study the interaction between genotypes and environments. The fitting of probability distributions to data from phenomena allows the knowledge of the behavior of random variables and the later usage of such models in computational simulation. This procedure was carried out in the adjustment of models for maize grains weight, obtained via multi environmental trials. Several methods of adjustment of distribution and mixtures of normal distributions by the EM algorithm were used. The data were obtained through the use of scrapping with software R. Adjusted models were used to simulate, through computational methods implemented in language R, data with behavior known in parametric terms, generating a table that simulates the interaction between genotype and environment factors. Such simulated data were used to verify and compare models based on multivariate analysis, namely AMMI, weighted AMMI and GGE for the study of genotype environment interaction GxE. The results demonstrated the great effectiveness of the models in capturing the properties of the simulated data, contextualizing them as informational tools in the development of new products. / A estatística fundamenta-se em um paradigma elementar, baseado na relação entre a inferência indutiva probabilística, geração e validação de modelos e o uso de tais informações como subsídio em decisões em um domínio específico de conhecimento. Aliado a isso, técnicas podem ser utilizadas para delinear tipos específicos de experimentos, como os ensaios multi ambientais MET para estudos de interação entre genótipos e ambientes. O ajuste de distribuição de probabilidades a dados provenientes de fenômenos permite o conhecimento do comportamento de variáveis aleatórias e posterior uso de tais modelos em simulação computacional. Tal procedimento foi realizado no ajuste de modelos para peso de grãos de genótipos de milho em ensaios multi ambientais, através de diversos métodos de ajuste de distribuição e mixturas de distribuições normais pelo algoritmo EM. Os dados foram obtidos através do uso de scrapping via software R. Por sua vez, os modelos ajustados foram utilizados para simular, através de métodos computacionais implementados em linguagem R, dados com comportamento conhecido em termos paramétricos, através de uma tabela que simula a interação entre os fatores genótipo e ambiente. Tais dados simulados foram utilizados para verificar, e comparar os modelos baseados em análise multivariada de dados, a saber AMMI, AMMI ponderado e GGE, para o estudo da interação genótipo ambiente (GxE). Os resultados demonstraram a grande efetividade dos modelos em captar as propriedades dos dados simulados, contextualizando-os como ferramentas informacionais no desenvolvimento de novos produtos.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-18092019-090800 |
Date | 05 August 2019 |
Creators | Sarti, Danilo Augusto |
Contributors | Dias, Carlos Tadeu dos Santos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds