This thesis studies navigation and autonomous driving using convolutional neural networks. It presents main approaches to this problem used in literature. It describes theory of neural networks and imitation and reinforcement learning. It also describes tools and methods suitable for a driving system. There are two simulation driving models created using learning algorithms DAGGER and DDPG. The models are then tested in car racing simulator TORCS.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413300 |
Date | January 2018 |
Creators | Skácel, Dalibor |
Contributors | Veľas, Martin, Hradiš, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0078 seconds