Return to search

Navigace pomocí hlubokých konvolučních sítí / Navigation Using Deep Convolutional Networks

This thesis studies navigation and autonomous driving using convolutional neural networks. It presents main approaches to this problem used in literature. It describes theory of neural networks and imitation and reinforcement learning. It also describes tools and methods suitable for a driving system. There are two simulation driving models created using learning algorithms DAGGER and DDPG. The models are then tested in car racing simulator TORCS.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413300
Date January 2018
CreatorsSkácel, Dalibor
ContributorsVeľas, Martin, Hradiš, Michal
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0078 seconds