Return to search

Etude de la chimie de la haute et basse atmosphère de Titan : approche expérimentale / Study of Titan’s Upper and Lower Atmosphere : An Experimental Approach

Je présente ici mes travaux de thèseque j’ai réalisé ces trois dernières années au seindu Laboratoire ATMosphères et Observations Spa-tiales (LATMOS) de l’Université de Versailles St-Quentin-en-Yvelines (UVSQ) et du Jet PropulsionLaboratory (JPL), California Institute of Technol-ogy. Pendant ces 3 ans je me suis intéressé à la réac-tivité chimique des composés organiques en phasegaz et solide, en utilisant des expériences de labo-ratoire simulant les conditions de l’ionosphère et dela basse atmosphère de Titan, le plus gros satellitede Saturne. Titan est la seule lune du Système So-laire qui possède sa propre atmosphère. Cette atmo-sphère est principalement composée d’azote molécu-laire (N2). Le méthane (CH4) forme le gaz sec-ondaire. D’une part, j’ai analysé les composés neu-tres et les composés chargés (ions) présents dansdes mélanges gazeux simulant la haute atmosphèrede Titan. Ces composés sont considérés commeprécurseurs chimique à la brume organique observéeentourant Titan. C’est-à-dire qu’ils forment les pre-mières étapes d’une succession de réactions chim-iques de plus en plus élaborées formant plus bas dansl’atmosphère des particules solides complexes. Lanature de ces particules dans l’atmosphère de Titanreste encore à élucider complètement. Mon travailpendant cette thèse a été d’utiliser des expériencesde laboratoire pour investiguer la réactivité chim-ique en phase gaz (Chapitres 3 & 4), précurseurs àla formation d’aérosols, ainsi que le vieillissement deces composés plus bas dans l’atmosphère lorsqu’ilsforment les premiers condensats de nucléation à laformation de nuages (Chapitre 5). / Titan is the only moon in the SolarSystem to possess its own dense and gravitationallybound atmosphere, and is even larger than planetMercury. Its rocky diameter is a mere 117 km shy ofGanymede’s. If we were to scoop up a 1 cm3 sam-ple from Titan’s upper atmosphere, we would findtwo dominant molecules: molecular nitrogen N2 andmethane CH4. Should we look a bit more carefully,we would find many neutral molecules and positiveand negative ion compounds. These chemical speciesare the outcome of processes resulting from ener-getic radiation reaching Titan’s upper atmosphere,breaking apart the initial N2 and CH4. A cascadeof subsequent reactions will trigger the formationof new gas phase products more and more com-plex. Eventually, these products mainly contain-ing hydrogen, carbon and nitrogen will form largefractal aggregates composing the opaque haze en-shrouding the surface of Titan. This haze is whatgives Titan such a unique brownish hue. Most ofthe photochemically-produced volatiles will eventu-ally condense in the lower atmosphere, where theymay aggregate to form micrometer-sized icy parti-cles and clouds. During my PhD, I have focusedmy studies on (i) the gas phase reactivity of aerosolprecursors in experimental conditions analogous toTitan’s upper atmosphere (Chapters 3 & 4), and (ii)the end of life of some of the products as they con-dense in the lower and colder atmosphere (Chapter5). I used two experiments to address these respec-tive issues: the PAMPRE plasma reactor, located atLATMOS, UVSQ, Guyancourt, France, and the Ac-quabella chamber at the Jet Propulsion Laboratory,California Institute of Technology, Pasadena, USA.In this manuscript, I present my work on the neutraland positive ion reactivity in the PAMPRE plasmadischarge, as well as ice photochemistry results usinglaser irradiation in near-UV wavelengths.

Identiferoai:union.ndltd.org:theses.fr/2018SACLV049
Date01 October 2018
CreatorsDubois, David
ContributorsParis Saclay, Carrasco, Nathalie
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds