In this thesis we introduce, implement and compare several multivariate goodness-of-fit tests. First of all, we will focus on universal mul- tivariate tests that do not place any assumptions on parametric families of null distributions. Thereafter, we will be concerned with testing of multi- variate normality and, by using Monte Carlo simulations, we will compare power of five different tests of bivariate normality against several alternati- ves. Then we describe multivariate skew-normal distribution and propose a new test of multivariate skew-normality based on empirical moment genera- ting functions. In the final analysis, we compare its power with other tests of multivariate skew-normality. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:344150 |
Date | January 2016 |
Creators | Kuc, Petr |
Contributors | Hlávka, Zdeněk, Antoch, Jaromír |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds