Return to search

Numerical Simulations Of Void Growth In Ductile Single Crystals

The failure mechanism in ductile materials involves void nucleation, their growth and subsequent coalescence to form the fracture surface. The voids are generated due to fracture or debonding of second phase particles or at slip band intersections. The triaxial stress field prevailing around a crack tip and in the necking region strongly influences the growth of these voids. In the initial stages of deformation, these microscale voids are often sufficiently small so that they exist entirely within a single grain of a polycrystalline material. Further, single crystals are used in high technology applications like turbine blades. This motivates the need to study void growth in a single crystal while investigating ductile fracture. Thus, the objectives of this work are to analyze the interaction between a notch tip and void as well as the growth and coalescence of a periodic array of voids under different states of stress in ductile FCC single crystals.
First, the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals is studied. To this end, 2D plane strain finite element simulations are carried out under mode I, small scale yielding conditions, neglecting elastic anisotropy. In most of these computations, the orientation of the FCC single crystal is chosen so that notch lies in the (010) plane, with notch front along the [101] direction and potential crack growth along [101]. This orientation has been frequently observed in experimental studies on fracture of FCC single crystals. Three equivalent slip systems are considered which are deduced by combining three pairs of 3D conjugate slip systems producing only in-plane deformation. Attention is focused on the effects of crystal hardening, ratio of void diameter to spacing from the notch on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between slip shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. However, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. In order to examine the effect of crystal orientation, computations are performed with an orientation wherein the three effective slip systems are rotated about the normal to the plane of deformation. A strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Further, in order to study the synergistic, cooperative growth of multiple voids ahead of the notchtip, an analysis is performed by considering a series of voids located ahead of the tip. It is found that enhanced void growth occurs at higher load levels as compared to the single void model.
Next, the growth and coalescence of a periodic array of cylindrical voids in a FCC single crystal is analyzed under different stress states by employing a 2D plane strain, unit cell approach. The orientation of the crystal studied here considers [101] and [010] crystal directions along the minor and major principal stress directions, respectively. Three equivalent slip systems, similar to those in the notch and void simulations are taken into account. Fringe contours of plastic slip and evolution of macroscopic hydrostatic stress and void volume fraction are examined. A criterion for unstable void growth which leads to onset of void coalescence is established. The effects of various stress triaxialities, initial void volume fraction and hardening on void growth and coalescence is assessed. It is observed that plastic slip activity around the void intensifies with increase in stress triaxiality. The macroscopic hydrostatic stress increases with deformation, reaches a peak value and subsequently decreases rapidly. An increase in stress triaxiality enhances the macroscopic hydrostatic stress sustained by the unit cell and promotes void coalescence. The stress triaxiality also has a profound effect on the shape of the void profile. The values of critical void volume fraction and critical strain, which mark onset of void coalescence, decrease within crease in stress triaxiality. However, the onset of void coalescence is delayed by increase in hardening and decrease initial void volume fraction.

  1. http://hdl.handle.net/2005/854
Identiferoai:union.ndltd.org:IISc/oai:etd.ncsi.iisc.ernet.in:2005/854
Date01 1900
CreatorsThakare, Amol G
ContributorsNarasimhan, R
Source SetsIndia Institute of Science
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationG22312

Page generated in 0.0056 seconds