Master of Science / Department of Animal Sciences and Industry / Twig T. Marston / One hundred ninety-three crossbred steers from two herds were used to determine the association of leptin gene polymorphisms and effects of feedlot management of lean and fat steers on carcass performance. Steers were sorted into FAT and LEAN groups by ultrasound backfat at weaning and randomly assigned to a finishing phase. Steers were assigned to a backgrounding phase (BACK) and were fed a forage-based diet for 90 days or directly entered a feedlot phase (FEED). Genotypes were determined by IGENITY® (Atlanta, GA) for a panel of nine single nucleotide polymorphisms (SNP) in the leptin gene (UASMS1, UASMS2, C963T, E2FB, A1457G, and A252T), leptin receptor (T945M), growth hormone receptor (G200A), and fat metabolism enzyme (K232A). Initial backfat (BF) means for the FAT and LEAN group were 3.4 mm and 1.8 mm, respectively. Mean on-test weight was heavier for FAT (306.5 kg) than LEAN (292.9 kg). Age-adjusted hot carcass weights (HCWT) were heavier for LEAN/BACK when compared to FAT/FEED and FAT/BACK (P<0.05). Dressing percent for the FAT/FEED group tended to be higher (P<0.10) over all groups except LEAN/BACK. Steers that went directly to the feedlot had higher marbling scores than backgrounded groups. FAT/FEED had higher 12th rib BF than the other contemporaries. None of the SNPs were useful for predicting ultrasound BF at weaning. Some association was detected with UASMS2 and HCWT (P<0.10) resulting in an 11 kg difference between genotype CC and CT (P<0.05). Five of the leptin polymorphisms (UASMS1, UASMS2, A1457G, C963T, and E2FB) were associated with adjusted carcass BF (P=0.01, 0.06, 0.01, 0.01, and 0.01, respectively) and calculated yield grade (P<0.01). A252T was associated with REA, and genotype TT was larger than AA and AT (P<0.05). This study suggests that segregation by initial fatness estimates and feedlot management strategies has the opportunity to increase HCWT by 35 kg. Sorting cattle upon
feedlot entry by ultrasound BF and segregation using genetic markers are useful tools that can assist in the estimation of carcass composition in the live animal. With additional research, the possibility exists to incorporate genetic markers into feedlot selection to assist in marketing decisions.
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/1400 |
Date | January 1900 |
Creators | Breiner, Ryan Michael |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0046 seconds